1,577 research outputs found

    Shaking table testing of an existing masonry building: assessment and improvement of the seismic performance

    Get PDF
    This paper aims to assess and improve the seismic performance of an existing masonry building with flexible floors, representative of a Portuguese building typology—‘gaioleiro’ buildings. The study involved seismic tests and dynamic identification tests of two models (nonstrengthened and strengthened) in the shaking table. Each model was subjected to several seismic tests with increasing amplitude. . Before the first test and after each seismic test, the dynamic identification of the model was carried out, aiming at obtaining their seismic vulnerability curves based on a damage indicator obtained from the decrease of the frequencies of the modes. In the strengthened model, steel elements were used to improve the connection between walls and floors, together with ties in the upper stories. The results show that adopted strengthening technique is effective for reducing the seismic vulnerability of ‘gaioleiro’ buildings, namely for improving the out-of-plane behavior of the facades.The first author acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) through grant SFRH/BD/32190/2006. The work was also supported by the project 'New Integrated Knowledge based approaches to the protection of cultural heritage form Earthquake-induced Risk' (NIKER FP7-ENV-2009-1-224123) from the European Commission

    A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis

    Get PDF
    The degree of vulcanization of a rubber compound has a big influence on the properties of the final product. Therefore, precisely defining the curing process including optimum cure time is important to ensure the production of final products having high performance. Typically, vulcanization is represented using vulcanization curves. The main types of equipment used for producing vulcanization curves are the oscillating disc rheometer (ODR) and the moving die rheometer (MDR). These can be used to plot graphs of torque versus time at a constant temperature to show how cure is proceeding. Based on the results obtained, optimum cure time (t₉₀) is calculated as the time required for the torque to reach 90% of the maximum achievable torque. In this study, the use of Dynamic Mechanical Analysis (DMA) for assessment of t₉₀ was assessed. DMA was carried out using shear mode isothermal tests to measure the changes in material properties caused by vulcanization. The results revealed that the shear storage modulus (G′), shear loss modulus (G′′), and tan δ all reflect the vulcanization process, however, tan δ gave the best representation of level of vulcanization. Indeed, the curve of tan δ was able to be used to derive the t₉₀ for rubber compounds and showed good agreement with the results from an MDR

    A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    Get PDF
    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6]

    UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments

    Full text link
    UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.Comment: 13 pages, 6 figures, 3 tables; To be submitted to Journal of Instrumentatio

    Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process

    Get PDF
    The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.This work was supported by Strategic Project - LA 25 - 2013–2014 [PEst-C/CTM/LA0025/2013]

    Green concrete production incorporating waste carpet fiber and palm oil fuel ash

    Get PDF
    With the increasing amount of waste generation from various processes, there has been a growing interest in the utilization of waste in producing building materials to achieve potential benefits. This paper highlights the results of an experimental investigation on the performance of concrete incorporating waste carpet fiber (WCF) and palm oil fuel ash (POFA) as partial replacements of ordinary Portland cement (OPC). Six volume fractions varying from 0 to 1.25% of 20-mm-long carpet fiber were used with OPC concrete mixes. Another six mixes were made that replaced OPC with 20% POFA. The specimens were cured in water and tested for fresh and hardened state properties. The combination of WCF and POFA decreased the slump values and increased the VeBe time of fresh concrete. The addition of WCF to either OPC or POFA concrete mixes did not improve the compressive strength or modulus of elasticity. At 91 days, the compressive strength was in the range of 38.1e49.1 MPa. The positive interaction between WCF and POFA, however, leads to high tensile and flexural strengths, thereby increasing the concrete ductility with higher energy absorption and improved crack distribution. The maximum increases in tensile and flexural strengths compared to those of plain concrete were achieved by the addition of 0.5% carpet fiber at the age of 91 days. The ultrasonic pulse velocity (UPV) was examined and was classified as good quality concrete. The study showed that the use of waste carpet fiber and palm oil fuel ash in the production of sustainable green concrete is feasible both technically and environmentally

    Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy

    Full text link
    The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions
    corecore