2,443 research outputs found
Footprints of the Beyond in flavor physics: Possible role of the Top Two Higgs Doublet Model
The B-factories results provide an impressive confirmation of the Standard
Model (SM) description of flavor and CP violation. Nevertheless, as more data
were accumulated, deviations in the 2.5-3.5 sigma range have emerged pointing
to the exciting possibility of new CP-odd phase(s) and flavor violating
parameters in B-decays. Primarily this seems to be the case in the time
dependent CP asymmetries in penguin dominated modes (e.g. B -> phi (eta') Ks).
We discuss these and other deviations from the SM and, as an illustration of
possible new physics scenarios, we examine the role of the Top Two Higgs
Doublet Model. This is a simple extension of the SM obtained by adding second
Higgs doublet in which the Yukawa interactions of the two Higgs doublets are
assigned in order to naturally account for the large top-quark mass.
Of course, many other extensions of the Standard Model could also account for
these experimental deviations. Clearly if one takes these deviations seriously
then some new particles in the 300 GeV to few TeV with associated new CP-odd
phase(s) are needed.Comment: 40 pages, 17 figures (png format), uses pdflate
Event Reconstruction for a DIRC
Monte Carlo simulations were made for a possible DIRC at the WASA detector at
COSY. A statistical method for pattern recognition is presented and the
possible angle resolution and velocity precision achieved are discussed.Comment: Minor changes in text. Figures updated. accepted by JINS
Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions
We present new results from measurements and simulations of positron spectra,
originating from 238U + 181Ta collisions at beam energies close to the Coulomb
barrier. The measurements were performed using an improved experimental setup
at the double-Orange spectrometer of GSI. Particular emphasis is put on the
signature of positrons from Internal-Pair-Conversion (IPC) processes in the
measured e+ energy spectra, following the de-excitation of electromagnetic
transitions in the moving Ta-like nucleus. It is shown by Monte Carlo
simulations that, for the chosen current sweeping procedure used in the present
experiments, positron emission from discrete IPC transitions can lead to rather
narrow line structures in the measured energy spectra. The measured positron
spectra do not show evidence for line structures within the statistical
accuracy achieved, although expected from the intensities of the observed
transitions (E keV) and theoretical conversion
coefficients. This is due to the reduced detection efficiency for IPC
positrons, caused by the limited spatial and momentum acceptance of the
spectrometer. A comparison with previous results, in which lines have been
observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.
Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM
We study the implications for electroweak baryogenesis (EWB) within the
minimal supersymmetric Standard Model (MSSM) of present and future searches for
the permanent electric dipole moment (EDM) of the electron, for neutralino dark
matter, and for supersymmetric particles at high energy colliders. We show that
there exist regions of the MSSM parameter space that are consistent with both
present two-loop EDM limits and the relic density and that allow for successful
EWB through resonant chargino and neutralino processes at the electroweak phase
transition. We also show that under certain conditions the lightest neutralino
may be simultaneously responsible for both the baryon asymmetry and relic
density. We give present constraints on chargino/neutralino-induced EWB implied
by the flux of energetic neutrinos from the Sun, the prospective constraints
from future neutrino telescopes and ton-sized direct detection experiments, and
the possible signatures at the Large Hadron Collider and International Linear
Collider.Comment: 32 pages, 10 figures; version to appear on JHE
Model Independent Approach to Focus Point Supersymmetry: from Dark Matter to Collider Searches
The focus point region of supersymmetric models is compelling in that it
simultaneously features low fine-tuning, provides a decoupling solution to the
SUSY flavor and CP problems, suppresses proton decay rates and can accommodate
the WMAP measured cold dark matter (DM) relic density through a mixed
bino-higgsino dark matter particle. We present the focus point region in terms
of a weak scale parameterization, which allows for a relatively model
independent compilation of phenomenological constraints and prospects. We
present direct and indirect neutralino dark matter detection rates for two
different halo density profiles, and show that prospects for direct DM
detection and indirect detection via neutrino telescopes such as IceCube and
anti-deuteron searches by GAPS are especially promising. We also present LHC
reach prospects via gluino and squark cascade decay searches, and also via
clean trilepton signatures arising from chargino-neutralino production. Both
methods provide a reach out to m_{\tg}\sim 1.7 TeV. At a TeV-scale linear
e^+e^- collider (LC), the maximal reach is attained in the \tz_1\tz_2 or
\tz_1\tz_3 channels. In the DM allowed region of parameter space, a
\sqrt{s}=0.5 TeV LC has a reach which is comparable to that of the LHC.
However, the reach of a 1 TeV LC extends out to m_{\tg}\sim 3.5 TeV.Comment: 34 pages plus 36 eps figure
Collider and Dark Matter Phenomenology of Models with Mirage Unification
We examine supersymmetric models with mixed modulus-anomaly mediated SUSY
breaking (MM-AMSB) soft terms which get comparable contributions to SUSY
breaking from moduli-mediation and anomaly-mediation. The apparent (mirage)
unification of soft SUSY breaking terms at Q=mu_mir not associated with any
physical threshold is the hallmark of this scenario. The MM-AMSB structure of
soft terms arises in models of string compactification with fluxes, where the
addition of an anti-brane leads to an uplifting potential and a de Sitter
universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly
depends on the relative strength of moduli- and anomaly-mediated SUSY breaking
contributions, and on the Higgs and matter field modular weights, which are
determined by the location of these fields in the extra dimensions. We
delineate the allowed parameter space for a low and high value of tan(beta),
for a wide range of modular weight choices. We calculate the neutralino relic
density and display the WMAP-allowed regions. We show the reach of the CERN LHC
and of the International Linear Collider. We discuss aspects of MM-AMSB models
for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching
fraction. We also calculate direct and indirect dark matter detection rates,
and show that almost all WMAP-allowed models should be accessible to a
ton-scale noble gas detector. Finally, we comment on the potential of colliders
to measure the mirage unification scale and modular weights in the difficult
case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is
at http://www.hep.fsu.edu/~bae
Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes
We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family
symmetry of Dermisek and Raby (DR). The model is specified in terms of 24
parameters and predicts, as a function of them, the whole MSSM set of
parameters at low energy scales. Concerning the SM subset of such parameters,
the model is able to give a satisfactory description of the quark and lepton
masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to
the model, including flavour changing neutral current (FCNC) processes Bs -->
mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass
differences Delta M(d,s) as well as the flavour changing (FC) process B+ -->
tau+ nu. These observables provide at present the most sensitive probe of the
SUSY mass spectrum and couplings predicted by the model. Our analysis
demonstrates that the simultaneous description of the FC observables in
question represents a serious challenge for the DR model, unless the masses of
the scalars are moved to regions which are problematic from the point of view
of naturalness and probably beyond the reach of the LHC. We emphasize that this
problem could be a general feature of SUSY GUT models with third generation
Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches
JHEP published versio
Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection
In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass
unification, the predicted relic abundance of neutralinos usually exceeds the
strict limits imposed by the WMAP collaboration. One way to obtain the correct
relic abundance is to abandon gaugino mass universality and allow a mixed
wino-bino lightest SUSY particle (LSP). The enhanced annihilation and
scattering cross sections of mixed wino dark matter (MWDM) compared to bino
dark matter lead to enhanced rates for direct dark matter detection, as well as
for indirect detection at neutrino telescopes and for detection of dark matter
annihilation products in the galactic halo. For collider experiments, MWDM
leads to a reduced but significant mass gap between the lightest neutralinos so
that chi_2^0 two-body decay modes are usually closed. This means that dilepton
mass edges-- the starting point for cascade decay reconstruction at the CERN
LHC-- should be accessible over almost all of parameter space. Measurement of
the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross
sections as a function of beam polarization at the International Linear
Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in
the universe.Comment: 29 pages including 19 eps figure
- …
