51 research outputs found
Predictors and moderators of outcomes of HIV/STD sex risk reduction interventions in substance abuse treatment programs: a pooled analysis of two randomized controlled trials
Skin sensitization in silico protocol
The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship of skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization
Consequence of one-electron oxidation and one-electron reduction for aniline
Quantum-chemical calculations were performed for all possible isomers of neutral aniline and its redox forms, and intramolecular proton-transfer (prototropy) accompanied by π-electron delocalization was analyzed. One-electron oxidation (PhNH2 – e → [PhNH2]+•) has no important effect on tautomeric preferences. The enamine tautomer is preferred for oxidized aniline similarly as for the neutral molecule. Dramatical changes take place when proceeding from neutral to reduced aniline. One-electron reduction (PhNH2 + e → [PhNH2]-•) favors the imine tautomer. Independently on the state of oxidation, π- and n-electrons are more delocalized for the enamine than imine tautomers. The change of the tautomeric preferences for reduced aniline may partially explain the origin of the CH tautomers for reduced nucleobases (cytosine, adenine, and guanine)
Rapid Dissemination of SIV Follows Multisite Entry after Rectal Inoculation
Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum
Selectivity of Nanocrystalline IrO2-Based Catalysts in Parallel Chlorine and Oxygen Evolution
Nanocrystalline electrocatalysts with chemical composition corresponding to Ir1 − xMxO2 (M = Co, Ni, and Zn, 0.05 ≤ x ≤ 0.2) were prepared by the hydrolysis of H2IrCl6·4H2O solutions combined with nitrates and acetates of Ni, Zn, and Co. X-ray diffraction (XRD) analysis indicates that the dopant Co, Ni, and Zn cations substitute the Ir atoms in the rutile lattice. The prepared materials contain small inclusions of iridium metal on the level comparable with the detection of the XRD technique. The local environment of Co and Zn in the doped IrO2 materials conforms to a rutile model with a homogeneous distribution of the doping elements in the rutile lattice. The incorporated Ni is distributed in the rutile lattice non-homogeneously and tends to form clusters within rutile structure. The incorporation of Ni and Co enhances the activity of the prepared electrocatalysts in oxygen evolution. The modification of the IrO2 via doping process alters also the material’s selectivity in the parallel oxygen and chlorine evolution. Incorporation of Co and Zn cations shifts the selectivity of the catalysts toward oxygen evolution in chloride-containing media; the Ni incorporation leads to an enhancement of the selectivity toward chlorine evolution. Chlorine evolution is apparently limited by the number of the active catalytic sites on the electrode surface.acceptedVersion© Springer Verlag. The final publication is available at https://link.springer.com/article/10.1007%2Fs12678-014-0233-y. This is the authors' accepted and refereed manuscript to the article
Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing
Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasmonic metasurface forming the resonant body of a nanomechanical resonator with simultaneously tailored optical and electromechanical properties. We experimentally demonstrate that it is possible to achieve high thermomechanical coupling between electromagnetic and mechanical resonances in a single ultrathin piezoelectric nanoplate. The combination of nanoplasmonic and piezoelectric resonances allows the proposed device to selectively detect long-wavelength infrared radiation with unprecedented electromechanical performance and thermal capabilities. These attributes lead to the demonstration of a fast, high-resolution, uncooled infrared detector with ∼80% absorption for an optimized spectral bandwidth centered around 8.8 μm
- …
