3,703 research outputs found
Cellular signaling pathways of matrix metalloproteinase gene expression by Pseudomonas aeruginosa-infected human bronchial epithelial cells
Research Dissemination Reports - supported by funds (Research Fund for the Control of Infectious Diseases)published_or_final_versio
Recommended from our members
The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion-exchanged hydroxyapatite
The synthesis of methyl isobutyl ketone (MIBK) can be carried out by the condensation of acetone in the presence of hydrogen over a supported metal catalyst. Previous studies have shown that hydroxyapatite is an excellent catalyst for condensation reactions. The present investigation was undertaken in order to elucidate the reaction mechanism and site requirements for acetone coupling to MIBK over a physical mixture of hydroxyapatite and Pd/SiO2. The reaction is found to proceed by consecutive aldol addition to form diacetone alcohol (DAA), dehydration of DAA to mesityl oxide (MO), and hydrogenation of MO to MIBK. The products formed by feeding DAA and MO reveal that aldol addition of acetone is rapid and reversible, and that the subsequent dehydration of DAA is rate-limiting. Pyridine and CO2 titration show that aldol dehydration occurs over basic sites via an E1cB mechanism. A series of cation-substituted hydroxyapatite samples were prepared by ion-exchange to further investigate the role of acid-base strength on catalyst performance. Characterization of these samples by PXRD, BET, ICP-OES, XPS, CO2-TPD, and Raman spectroscopy demonstrated that the exchange procedure used does not affect the bulk properties of hydroxyapatite. DFT calculations reveal that in addition to affecting the Lewis acidity/basicity of the support, the size of the cation plays a significant role in the chemistry: cations that are too large (Ba2+) or too small (Mg2+) adversely affect reaction rates due to excessive stabilization of intermediate species. Strontium-exchanged hydroxyapatite was found to be the most active catalyst because it promoted α-hydrogen abstraction and C–O bond cleavage of DAA efficiently
Recommended from our members
Zeolite-Catalyzed Isobutene Amination: Mechanism and Kinetics
Amination of isobutene with NH was investigated over Brønsted acidic zeolites at 1 atm and 453-483 K. To compare catalytic activities over different zeolites, the measured reaction rates are normalized by the number of active sites determined by tert-butylamine temperature-programmed desorption (TPD). Small- A nd medium-pore zeolites with one-dimensional channels exhibit low activity because of pore blockage by adsorbed tert-butylammonium ions. However, turnover frequencies and activation energies are not sensitive to framework identity, as long as the active site is accessible to isobutene and tert-butylamine. Kinetic measurements and FTIR spectroscopy reveal that the Brønsted acid sites in MFI are covered predominantly with tert-butylammonium ions under reaction conditions. The desorption of tert-butylamine is assisted by the concurrent adsorption of isobutene. DFT simulations show that at very low tert-butylamine partial pressures, for example, at the inlet to the reactor, tert-butylamine desorption is rate-limiting. However, at sufficiently high tert-butylamine partial pressures (>0.03 kPa), protonation of isobutene to the corresponding carbenium ion limits the rate of amination.
Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus
BACKGROUND: There is uncertainty about the mode of transmission of the severe acute respiratory syndrome (SARS) virus. We analyzed the temporal and spatial distributions of cases in a large community outbreak of SARS in Hong Kong and examined the correlation of these data with the three-dimensional spread of a virus-laden aerosol plume that was modeled using studies of airflow dynamics. METHODS: We determined the distribution of the initial 187 cases of SARS in the Amoy Gardens housing complex in 2003 according to the date of onset and location of residence. We then studied the association between the location (building, floor, and direction the apartment unit faced) and the probability of infection using logistic regression. The spread of the airborne, virus-laden aerosols generated by the index patient was modeled with the use of airflow-dynamics studies, including studies performed with the use of computational fluid-dynamics and multizone modeling. RESULTS: The curves of the epidemic suggested a common source of the outbreak. All but 5 patients lived in seven buildings (A to G), and the index patient and more than half the other patients with SARS (99 patients) lived in building E. Residents of the floors at the middle and upper levels in building E were at a significantly higher risk than residents on lower floors; this finding is consistent with a rising plume of contaminated warm air in the air shaft generated from a middle-level apartment unit. The risks for the different units matched the virus concentrations predicted with the use of multizone modeling. The distribution of risk in buildings B, C, and D corresponded well with the three-dimensional spread of virus-laden aerosols predicted with the use of computational fluid-dynamics modeling. CONCLUSIONS: Airborne spread of the virus appears to explain this large community outbreak of SARS, and future efforts at prevention and control must take into consideration the potential for airborne spread of this virus. Copyright © 2004 Massachusetts Medical Society.published_or_final_versio
Coherent multi-flavour spin dynamics in a fermionic quantum gas
Microscopic spin interaction processes are fundamental for global static and
dynamical magnetic properties of many-body systems. Quantum gases as pure and
well isolated systems offer intriguing possibilities to study basic magnetic
processes including non-equilibrium dynamics. Here, we report on the
realization of a well-controlled fermionic spinor gas in an optical lattice
with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived
intrinsic spin oscillations and investigate the transition from two-body to
many-body dynamics. The latter results in a spin-interaction driven melting of
a band insulator. Via an external magnetic field we control the system's
dimensionality and tune the spin oscillations in and out of resonance. Our
results open new routes to study quantum magnetism of fermionic particles
beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure
Phase-slip induced dissipation in an atomic Bose-Hubbard system
Phase slips play a primary role in dissipation across a wide spectrum of
bosonic systems, from determining the critical velocity of superfluid helium to
generating resistance in thin superconducting wires. This subject has also
inspired much technological interest, largely motivated by applications
involving nanoscale superconducting circuit elements, e.g., standards based on
quantum phase-slip junctions. While phase slips caused by thermal fluctuations
at high temperatures are well understood, controversy remains over the role of
phase slips in small-scale superconductors. In solids, problems such as
uncontrolled noise sources and disorder complicate the study and application of
phase slips. Here we show that phase slips can lead to dissipation for a clean
and well-characterized Bose-Hubbard (BH) system by experimentally studying
transport using ultra-cold atoms trapped in an optical lattice. In contrast to
previous work, we explore a low velocity regime described by the 3D BH model
which is not affected by instabilities, and we measure the effect of
temperature on the dissipation strength. We show that the damping rate of
atomic motion-the analogue of electrical resistance in a solid-in the confining
parabolic potential fits well to a model that includes finite damping at zero
temperature. The low-temperature behaviour is consistent with the theory of
quantum tunnelling of phase slips, while at higher temperatures a cross-over
consistent with the transition to thermal activation of phase slips is evident.
Motion-induced features reminiscent of vortices and vortex rings associated
with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008
From Luttinger to Fermi liquids in organic conductors
This chapter reviews the effects of interactions in quasi-one dimensional
systems, such as the Bechgaard and Fabre salts, and in particular the Luttinger
liquid physics. It discusses in details how transport measurements both d.c.
and a.c. allow to probe such a physics. It also examine the dimensional
crossover and deconfinement transition occurring between the one dimensional
case and the higher dimensional one resulting from the hopping of electrons
between chains in the quasi-one dimensional structure.Comment: To be published In the book "The Physics of Organic Conductors and
Superconductors", Springer, 2007, ed. A. Lebe
Incoherent non-Fermi liquid scattering in a Kondo lattice
One of the most notorious non-Fermi liquid properties of both archetypal
heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is
an electrical resistivity that evolves linearly with temperature, T. In the
heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the
first indications of the presence of a zero-temperature instability, or quantum
critical point. Here, we report the observation of a unique control parameter
of T-linear scattering in CeCoIn5, found through systematic chemical
substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce
sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5
is strongly dependent on the f-electron configuration of the R ion, whereas two
other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are
not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature
of incoherent scattering centers in the Kondo lattice, which provides insight
into the anomalous scattering rate synonymous with quantum criticality [7].Comment: 4 pages, 3 figures (published version
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
A new conceptual approach for systematic error correction in CNC machine tools minimizing worst case prediction error
A new artifact-based method to identify the systematic errors in multi-axis CNC machine tools minimizing the worst case prediction error is presented. The closed loop volumetric error is identified by simultaneously moving the axes of the machine tool. The physical artifact is manufactured on the machine tool and later measured on a coordinate measuring machine. The artifact consists of a set of holes in the machine tool workspace at locations that minimize the worst case prediction error for a given bounded measurement error. The number of holes to be drilled depends on the degree of the polynomials used to model the systematic error and the number of axes of the machine tool. The prediction error is also function of the number and location of the holes. The feasibility of the method is first investigated for a two-axis machine to find the best experimental setting. Finally based on the two-axis case study, we extend the results to machine tools with any number of axes. The obtained results are very promising and require only a short time to produce the artifac
- …
