13 research outputs found

    Energy-scaling behavior of intrinsic transverse-momentum parameters in Drell-Yan simulation

    Get PDF
    Data Availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy https://dx.doi.org/10.7483/OPENDATA.CMS.7347.JDWH .A preprint version of the article is available on arXiv, arXiv:2409.17770v2 [hep-ph] (https://arxiv.org/abs/2409.17770). [v2] Tue, 8 Apr 2025 23:23:48 UTC (450 KB). Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-22-001 (CMS Public Pages). Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex). Report numbers: CMS-GEN-22-001, CERN-EP-2024-216An analysis is presented based on models of the intrinsic transverse momentum (intrinsic ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic parameters, independent of the dilepton invariant mass at a given center-of-mass energy.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA)

    Theoretical investigation into the palladium-catalyzed silaboration of pyridines

    No full text
    The palladium-catalyzed silaboration of pyridines has been investigated with the use of density functional theory. The results predict a very interesting dearomatization step in the reaction mechanism which is surprisingly facile due to the formation of a very strong covalent bond between nitrogen and boron in the product. Our calculations show that the regioselectivity of the final product is governed by a mixture of electronic and steric effects, and our predicted outcomes are in agreement with the experimental results
    corecore