3 research outputs found
Complete genome organization of American hop latent virus and its relationship to carlaviruses
The complete genomic sequence of American hop latent virus (AHLV; genus Carlavirus) was determined. The genome consists of 8,601 nucleotides plus a 3′-polyadenylate tail. The genome encompasses six potential open reading frames (ORF) in the positive sense, and their organization is typical of other carlaviruses. Analysis of the coat protein coding sequence at both the nucleic acid level and the amino acid level indicates that AHLV is only remotely related to the other carlaviruses known to infect common hop. Polyclonal antibodies were produced against the bacterially expressed coat protein of AHLV. These antibodies differentiated between AHLV and other carlaviruses of hop
Genomic and biological characterization of chiltepin yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico.
The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5′ and 3′ untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus
