767 research outputs found

    Wind tunnel measurements of forward speed effects on jet noise from suppressor nozzles and comparison with flight test data

    Get PDF
    The results of a test program conducted in the NASA Ames 40- by 80-Foot Wind Tunnel to determine the effect of forward speed on the noise levels emanating from a conical ejector nozzle, a 32-spoke suppressor nozzle, and a 104-elliptical-tube suppressor nozzle are reported. It is shown that noise levels are reduced as forward speed is increased and that, for one suppressor configuration, forward speed enhances suppression. Comparisons of noise measurements made in the wind tunnel with those obtained in flight tests show good agreement. It is concluded that wind tunnels provide an effective means of measuring the effect of forward speed on aircraft noise

    Comparison of wind tunnel and flyover noise measurements of the YOV-10A STOL aircraft

    Get PDF
    The YOV-10A Research Aircraft was flown to obtain flyover noise data that could be compared to noise data measured in the 40- by 80- foot wind tunnel at NASA Ames Research Center. The flyover noise measurements were made during the early morning hours on runway 32L at Moffett Field, California. A number of passes were made at 50 ft altitude in level flight with an airplane configuration closely matching that tested in the wind tunnel. Two passes were selected as prime and were designated for full data reduction. The YOV-10A was flown over a microphone field geometrically similar to the microphone array set up in the wind tunnel. An acoustic center was chosen as a matching point for the data. Data from the wind tunnel and flyover were reduced and appropiate corrections were applied to compare the data. Results show that wind tunnel and flight test acoustic data agreed closely

    Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Get PDF
    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant

    Advanced helicopter cockpit and control configurations for helicopter combat missions

    Get PDF
    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task

    Coordinated neuronal ensembles in primary auditory cortical columns.

    Get PDF
    The synchronous activity of groups of neurons is increasingly thought to be important in cortical information processing and transmission. However, most studies of processing in the primary auditory cortex (AI) have viewed neurons as independent filters; little is known about how coordinated AI neuronal activity is expressed throughout cortical columns and how it might enhance the processing of auditory information. To address this, we recorded from populations of neurons in AI cortical columns of anesthetized rats and, using dimensionality reduction techniques, identified multiple coordinated neuronal ensembles (cNEs), which are groups of neurons with reliable synchronous activity. We show that cNEs reflect local network configurations with enhanced information encoding properties that cannot be accounted for by stimulus-driven synchronization alone. Furthermore, similar cNEs were identified in both spontaneous and evoked activity, indicating that columnar cNEs are stable functional constructs that may represent principal units of information processing in AI

    Solitons in Triangular and Honeycomb Dynamical Lattices with the Cubic Nonlinearity

    Get PDF
    We study the existence and stability of localized states in the discrete nonlinear Schr{\"o}dinger equation (DNLS) on two-dimensional non-square lattices. The model includes both the nearest-neighbor and long-range interactions. For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the particular type of the lattice. The long-range interactions additionally destabilize the discrete soliton, or make it more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range interaction. We also explore more complicated solutions, such as twisted localized modes (TLM's) and solutions carrying multiple topological charge (vortices) that are specific to the triangular and honeycomb lattices. In the cases when such vortices are unstable, direct simulations demonstrate that they turn into zero-vorticity fundamental solitons.Comment: 17 pages, 13 figures, Phys. Rev.

    Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies

    Get PDF
    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.Comment: 9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Polan

    Hsp70 in mitochondrial biogenesis

    Get PDF
    The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix

    Melcherite, trigonal Ba2Na2Mg[Nb6O19]·6H2O, the second natural hexaniobate, from Cajati, São Paulo, Brazil: Description and crystal structure

    Get PDF
    0000-0002-6395-8895© Mineralogical Society of Great Britain and Ireland 2018. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    The effect of forward speed on J85 engine noise from suppressor nozzles as measured in the NASA-Ames 40- by 80-foot wind tunnel

    Get PDF
    An investigation to determine the effect of forward speed on the exhaust noise from a conical ejector nozzle and three suppressor nozzles mounted behind a J85 engine was performed in a 40- by 80-foot wind tunnel. The nozzles were tested at three engine power settings and at wind tunnel forward speeds up to 91 m/sec (300 ft/sec). In addition, outdoor static tests were conducted to determine (1) the differences between near field and far field measurements, (2) the effect of an airframe on the far field directivity of each nozzle, and (3) the relative suppression of each nozzle with respect to the baseline conical ejector nozzle. It was found that corrections to near field data are necessary to extrapolate to far field data and that the presence of the airframe changed the far field directivity as measured statically. The results show that the effect of forward speed was to reduce the noise from each nozzle more in the area of peak noise, but the change in forward quadrant noise was small or negligible. A comparison of wind tunnel data with available flight test data shows good agreement
    corecore