9 research outputs found

    A International Multicenter Cohort Study of Surgery for Recurrent Brain Metastases (RECMET) – An EANS Section of Neuro-Oncology Initiative

    No full text

    Uterine biology in pigs and sheep

    Get PDF
    <p>Abstract</p> <p>There is a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling, implantation, regulation of gene expression by uterine epithelial and stromal cells, placentation and exchange of nutrients and gases. The uterus provide a microenvironment in which molecules secreted by uterine epithelia or transported into the uterine lumen represent histotroph required for growth and development of the conceptus and receptivity of the uterus to implantation. Pregnancy recognition signaling mechanisms sustain the functional lifespan of the corpora lutea (CL) which produce progesterone, the hormone of pregnancy essential for uterine functions that support implantation and placentation required for a successful outcome of pregnancy. It is within the peri-implantation period that most embryonic deaths occur due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. With proper placentation, the fetal fluids and fetal membranes each have unique functions to ensure hematotrophic and histotrophic nutrition in support of growth and development of the fetus. The endocrine status of the pregnant female and her nutritional status are critical for successful establishment and maintenance of pregnancy. This review addresses the complexity of key mechanisms that are characteristic of successful reproduction in sheep and pigs and gaps in knowledge that must be the subject of research in order to enhance fertility and reproductive health of livestock species.</p

    Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry

    No full text
    International audienceExploration of natural sources for novel bioactive compounds has been an emerging field of medicine over the past decades, providing drugs or lead compounds of considerable therapeutic potential. This research has provided exciting evidence on the isolation of microbe-derived metabolites having prospective biological activities. Mushrooms have been valued as traditional sources of natural bioactive compounds for many centuries and have been targeted as promising therapeutic agents. Many novel biologically active compounds have been reported as a result of research on medicinal mushrooms. In this review, we compile the information on bioactive structure-elucidated metabolites from macrofungi discovered over the last decade and highlight their unique chemical diversity and potential benefits to novel drug discovery. The main emphasis is on their anti-Alzheimer, antidiabetic, anti-malarial, anti-microbial, anti-oxidant, antitumor, anti-viral and hypocholesterolemic activities which are important medicinal targets in terms of drug discovery today. Moreover, the reader’s attention is brought to focus on mushroom products and food supplements available in the market with claimed biological activities and potential human health benefits
    corecore