1,303 research outputs found
Energy savings using an adaptive base station-to-relay station switching paradigm
Applying a Base Station (BS) sleep approach during low traffic periods has recently been advocated as a strategy for reducing energy consumption in cellular networks. The complete switching off of certain BS however, can lead to coverage holes and severe performance degradation in terms of off-cell user throughput, greater transmit power dissipation in both the up and downlinks, and more complex interference management. This paper presents a novel cellular network energy saving model in which certain BS rather being turned off are switched to Relay Station (RS) mode during low traffic periods. The switched RS and other shared RS deployed at the cross border of each cell are responsible for upholding the same quality of service (QoS) provision as when all BS are active. A centralised adaptive switching threshold algorithm is also introduced to undertake the switching decision, instead of using a fixed threshold. Simulation results confirm the new BS-RS Switching model using an adaptive threshold can reduce network energy consumption by more than half, as well as improving off-cell users’ throughput
Road user charging and implications for transport policy: Findings from the CURACAO project
This paper reports on the outcomes of a European project, CURACAO, designed to support the implementation of urban road user charging (URUC) as a demand management tool in urban areas. The project did this through engagement with a User Group of cities interested in pursuing URUC to identify the barriers preventing them from doing so.
The project reviewed the complete process of setting up a URUC scheme from the setting of objectives, through to scheme design, predicting impacts, achieving acceptability and the implementation process and presented its findings in a State of the Art Report and a Case Studies Report. The State of the Art Report provides evidence collated from research and practice to address a series of 14 themes identified by the User Group, including objectives; scheme design; technology; business systems; prediction; traffic, environmental, economic and equity impacts; appraisal; acceptability; transferability; implementation; and evaluation. The Case Study Report reviewed 16 proposed or implemented schemes in Europe, focusing on pricing objectives, scheme design, the implementation process and scheme results. On this basis, the CURACAO Consortium developed a list of policy recommendations aimed at cities and regional authorities, national governments, and the European Commission.
The paper summarises the main findings of the State of the Art Report and the case studies. On this basis, it outlines the policy recommendations which were drawn, and identifies future research needs
Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching
Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks
Beating heart coronary surgery and renal function: a prospective randomised study (Presented at 18th Spring Meeting of the Association of Cardiothoracic Anaesthetists: Selected abstracts, Cambridge, UK. 22 June 2001)
Introduction
Cardiopulmonary bypass (CPB) is widely regarded as an important contributor to renal failure, a well recognised complication, following coronary artery surgery (CABG). Off-pump coronary surgery (OPCAB) is intuitively considered renoprotective. We examine the extent of renal glomerular and tubular injury in low-risk patients undergoing either OPCAB or on-pump coronary artery bypass (ONCAB).Methods
Forty patients awaiting elective CABG were prospectively randomized into those undergoing OPCAB (n = 20) and ONCAB (n = 20). Table 1 illustrates the exclusion criteria. Glomerular and tubular injury were assessed, respectively, by urinary excretion of microalbumin and retinol binding protein (RBP) indexed to urinary creatinine [1]. Daily measurements were made from admission to postoperative day 5. Fluid balance, serum creati-nine and blood urea were also monitored.
Results
No mortality or renal complication was observed. Both groups had similar demographic make-up. The OPCAB group received fewer coronary grafts than their counterparts (1.8 versus 2.8; P = 0.002). Serum creatinine and blood urea remained normal in both groups throughout the study. A dramatic and similar rise in mean ± 2SD urinary RBP:creatinine ratio occurred in both groups peaking on day 1 (3183 ± 2534 versus 4035 ± 4078; P = 0.43) before returning to baseline levels. These trends were also observed with the urinary microalbumin:creatinine ratio (5.05 ± 2.66 versus 6.77 ± 5.76; P = 0.22). ONCAB patients had a significantly more negative fluid balance on postoperative day 2 (-183 ± 1118 versus 637 ± 847 ml; P < 0.05).
Conclusions
Although renal dysfunction did not clinically occur in any patient, sensitive indicators revealed significant and similar injury to both renal tubules and glomeruli following either OPCAB or ONCAB. These suggest that avoidance of CPB per se does not offer additional renoprotection to patients at low risk of perioperative renal insult during CABG
Evaluating energy-efficient cloud radio access networks for 5G
YesNext-generation cellular networks such as fifth-generation (5G) will experience tremendous growth in traffic. To accommodate such traffic demand, there is a necessity to increase the network capacity that eventually requires the deployment of more base stations (BSs). Nevertheless, BSs are very expensive and consume a significant amount of energy. Meanwhile, cloud radio access networks (C-RAN) has been proposed as an energy-efficient architecture that leverages cloud computing technology where baseband processing is performed in the cloud, i.e., the computing servers or baseband processing units (BBUs) are located in the cloud. With such an arrangement, more energy saving gains can be achieved by reducing the number of BBUs used. This paper proposes a bin packing scheme with three variants such as First-fit (FT), First-fit decreasing (FFD) and Next-fit (NF) for minimizing energy consumption in 5G C-RAN. The number of BBUs are reduced by matching the right amount of baseband computing load with traffic load. In the proposed scheme, BS traffic items that are mapped into processing requirements, are to be packed into computing servers, called bins, such that the number of bins used are minimized and idle servers can then be switched off to save energy. Simulation results demonstrate that the proposed bin packing scheme achieves an enhanced energy performance compared to the existing distributed BS architecture
Energy-Efficient Cloud Radio Access Networks by Cloud Based Workload Consolidation for 5G
YesNext-generation cellular systems like fth generation (5G) is are expected to experience tremendous tra c growth. To accommodate such tra c demand, there is a need to increase the network capacity that eventually requires the
deployment of more base stations (BSs). Nevertheless, BSs are very expensive and consume a lot of energy. With growing complexity of signal processing, baseband units are now consuming a signi cant amount of energy.
As a result, cloud radio access networks (C-RAN) have been proposed as anenergy e cient (EE) architecture that leverages cloud computing technology where baseband processing is performed in the cloud. This paper proposes an energy reduction technique based on baseband workload consolidation using virtualized general purpose processors (GPPs) in the cloud. The rationale for the cloud based workload consolidation technique model is to switch o idle
baseband units (BBUs) to reduce the overall network energy consumption. The power consumption model for C-RAN is also formulated with considering radio side, fronthaul and BS cloud power consumption. Simulation results demonstrate that the proposed scheme achieves an enhanced energy performance compared to the existing distributed long term evolution (LTE) RAN system. The proposed scheme saves up to 80% of energy during low tra c periods and 12% during peak tra c periods compared to baseline LTE system. Moreover, the proposed scheme saves 38% of energy compared to the baseline system on a daily average
Fuzzy-Logic Based Call Admission Control in 5G Cloud Radio Access Networks with Pre-emption
YesFifth generation (5G) cellular networks will be comprised of millions of connected devices like wearable devices, Androids, iPhones, tablets and the Internet of Things (IoT) with a plethora of
applications generating requests to the network. The 5G cellular networks need to cope with such
sky-rocketing tra c requests from these devices to avoid network congestion. As such, cloud radio
access networks (C-RAN) has been considered as a paradigm shift for 5G in which requests from
mobile devices are processed in the cloud with shared baseband processing. Despite call admission
control (CAC) being one of radio resource management techniques to avoid the network
congestion, it has recently been overlooked by the community. The CAC technique in 5G C-RAN has
a direct impact on the quality of service (QoS) for individual connections and overall system
e ciency. In this paper, a novel Fuzzy-Logic based CAC scheme with pre-emption in C-RAN is proposed. In this scheme, cloud bursting technique is proposed to be used during congestion, where
some delay tolerant low-priority connections are pre-empted and outsourced to a public cloud with
a penalty charge. Simulation results show that the proposed scheme has low blocking probability
below 5%, high throughput, low energy consumption and up to 95% of return on revenue
Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur
Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simpli- fications often made to the representation of bone’s material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur’s volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study
Predicting cortical bone adaptation to axial loading in the mouse tibia
The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms
- …
