143 research outputs found
Finite size effects on the phase diagram of a binary mixture confined between competing walls
A symmetrical binary mixture AB that exhibits a critical temperature T_{cb}
of phase separation into an A-rich and a B-rich phase in the bulk is considered
in a geometry confined between two parallel plates a distance D apart. It is
assumed that one wall preferentially attracts A while the other wall
preferentially attracts B with the same strength (''competing walls''). In the
limit , one then may have a wetting transition of first order at a
temperature T_{w}, from which prewetting lines extend into the one phase region
both of the A-rich and the B-rich phase. It is discussed how this phase diagram
gets distorted due to the finiteness of D% : the phase transition at T_{cb}
immediately disappears for D<\infty due to finite size rounding, and the phase
diagram instead exhibit two two-phase coexistence regions in a temperature
range T_{trip}<T<T_{c1}=T_{c2}. In the limit D\to \infty T_{c1},T_{c2} become
the prewetting critical points and T_{trip}\to T_{w}.
For small enough D it may occur that at a tricritical value D_{t} the
temperatures T_{c1}=T_{c2} and T_{trip} merge, and then for D<D_{t} there is a
single unmixing critical point as in the bulk but with T_{c}(D) near T_{w}. As
an example, for the experimentally relevant case of a polymer mixture a phase
diagram with two unmixing critical points is calculated explicitly from
self-consistent field methods
Recommended from our members
Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria
The tuned mass-damper-inerter (TMDI) is a recently proposed linear passive dynamic vibration absorber for the seismic protection of buildings. It couples the classical tuned mass damper (TMD) with an inerter, a two-terminal device resisting the relative acceleration of its terminals, in judicial topologies, achieving mass-amplification and higher-modes-damping effects compared to the TMD. This paper considers an optimum TMDI design framework accommodating the above effects while accounting for parametric uncertainty to the host structure properties, modeled as a linear multi degree of freedom system, and to the seismic excitation, modeled as stationary colored noise. The inerter device constant, acting as a TMD mass amplifier, is treated as a design variable, whereas performance variables sensitive to high-frequency structural response dynamics are used to account for the TMDI influence to the higher structural modes. Reliability criteria are adopted for quantifying the structural performance, expressed through the probability of occurrence of different failure modes related to the trespassing of acceptable thresholds for the adopted performance variables: floor accelerations, interstory drifts, and attached mass displacement. The design objective function is taken as a linear combination of these probabilities following current performance-based seismic design trends. Analytical and simulation-based tools are adopted for the efficient estimation of the underlying stochastic integral defining the structural performance under uncertainty. A 10-story building under stationary Kanai-Tajimi stochastic excitation is considered to illustrate the design framework for various TMDI topologies and attached mass values. It is shown that the TMDI achieves enhanced structural performance and robustness to building and excitation uncertainties compared to same mass/weight TMDs
Gender sensitive research in a Chinese community
The aim of this article is to foster an awareness of the need for gender-sensitive research in the context of the methodological and ethical challenges posed by such research. We trace the development of gender sensitivity and masculinity in social work practice and research and connect this to an overview of the issues posed by research on sensitive topics. Reflecting on a research project involving Chinese male sexual abuse survivors, we draw conclusions illustrating and proposing a range of methodological practices and ethical safeguards. We underscore the importance of gender-sensitivity in performing research on sensitive topics with men in a Chinese community
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis (vol 42, pg 579, 2010)
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
<i>ESR1</i> Mutations and Overall Survival on Fulvestrant versus Exemestane in Advanced Hormone Receptor-Positive Breast Cancer: A Combined Analysis of the Phase III SoFEA and EFECT Trials.
Purpose ESR1 mutations are acquired frequently in hormone receptor-positive metastatic breast cancer after prior aromatase inhibitors. We assessed the clinical utility of baseline ESR1 circulating tumor DNA (ctDNA) analysis in the two phase III randomized trials of fulvestrant versus exemestane.Experimental design The phase III EFECT and SoFEA trials randomized patients with hormone receptor-positive metastatic breast cancer who had progressed on prior nonsteroidal aromatase inhibitor therapy, between fulvestrant 250 mg and exemestane. Baseline serum samples from 227 patients in EFECT, and baseline plasma from 161 patients in SoFEA, were analyzed for ESR1 mutations by digital PCR. The primary objectives were to assess the impact of ESR1 mutation status on progression-free (PFS) and overall survival (OS) in a combined analysis of both studies.Results ESR1 mutations were detected in 30% (151/383) baseline samples. In patients with ESR1 mutation detected, PFS was 2.4 months [95% confidence interval (CI), 2.0-2.6] on exemestane and 3.9 months (95% CI, 3.0-6.0) on fulvestrant [hazard ratio (HR), 0.59; 95% CI, 0.39-0.89; P = 0.01). In patients without ESR1 mutations detected, PFS was 4.8 months (95% CI, 3.7-6.2) on exemestane and 4.1 months (95% CI, 3.6-5.5) on fulvestrant (HR, 1.05; 95% CI, 0.81-1.37; P = 0.69). There was an interaction between ESR1 mutation and treatment (P = 0.02). Patients with ESR1 mutation detected had 1-year OS of 62% (95% CI, 45%-75%) on exemestane and 80% (95% CI, 68%-87%) on fulvestrant (P = 0.04; restricted mean survival analysis). Patients without ESR1 mutations detected had 1-year OS of 79% (95% CI, 71%-85%) on exemestane and 81% (95% CI, 74%-87%) on fulvestrant (P = 0.69).Conclusions Detection of ESR1 mutations in baseline ctDNA is associated with inferior PFS and OS in patients treated with exemestane versus fulvestrant
Efficient in vivo vascularization of tissue-engineering scaffolds
The success of tissue engineering depends on the rapid and efficient formation of a functional blood vasculature. Adult blood vessels comprise endothelial cells and perivascular mural cells that assemble into patent tubules ensheathed by a basement membrane during angiogenesis. Using individual vessel components, we characterized intra-scaffold microvessel self-assembly efficiency in a physiological in vivo tissue engineering implant context. Primary human microvascular endothelial and vascular smooth muscle cells were seeded at different ratios in poly- L -lactic acid (PLLA) scaffolds enriched with basement membrane proteins (Matrigel) and implanted subcutaneously into immunocompromised mice. Temporal intra-scaffold microvessel formation, anastomosis and perfusion were monitored by immunohistochemical, flow cytometric and in vivo multiphoton fluorescence microscopy analysis. Vascularization in the tissue-engineering context was strongly enhanced in implants seeded with a complete complement of blood vessel components: human microvascular endothelial and vascular smooth muscle cells in vivo assembled a patent microvasculature within Matrigel-enriched PLLA scaffolds that anastomosed with the host circulation during the first week of implantation. Multiphoton fluorescence angiographic analysis of the intra-scaffold microcirculation showed a uniform, branched microvascular network. 3D image reconstruction analysis of human pulmonary artery smooth muscle cell (hPASMC) distribution within vascularized implants was non-random and displayed a preferential perivascular localization. Hence, efficient microvessel self-assembly, anastomosis and establishment of a functional microvasculture in the native hypoxic in vivo tissue engineering context is promoted by providing a complete set of vascular components. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83466/1/336_ftp.pd
- …
