12 research outputs found

    Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite

    Get PDF
    BACKGROUND: Zanthoxylum heitzii (Rutaceae) (olon) is used in traditional medicine in Central and West Africa to treat malaria. To identify novel compounds with anti-parasitic activity and validate medicinal usage, extracts and compounds isolated from this tree were tested against the erythrocytic stages of the human malaria parasite Plasmodium falciparum and for inhibition of transmission in rodent malaria parasite Plasmodium berghei. RESULTS: Hexane bark extract showed activity against P. falciparum (IC50 0.050 μg/ml), while leaf and seed extracts were inactive. Fractionation of the hexane bark extract led to the identification of three active constituents; dihydronitidine, pellitorine and heitziquinone. Dihydronitidine was the most active compound with an IC50 value of 0.0089 µg/ml (25 nM). This compound was slow acting, requiring 50 % longer exposure time than standard anti-malarials to reach full efficacy. Heitziquinone and pellitorine were less potent, with IC50 values of 3.55 μg/ml and 1.96 µg/ml, but were fast-acting. Plasmodium berghei ookinete conversion was also inhibited by the hexane extract (IC50 1.75 µg/ml), dihydronitidine (0.59 µg/ml) and heitziquinone (6.2 µg/ml). Water extracts of Z. heitzii bark contain only low levels of dihydronitidine and show modest anti-parasitic activity. CONCLUSIONS: Three compounds with anti-parasitic activity were identified in Z. heitzii bark extract. The alkaloid dihydronitidine is the most effective of these, accounting for the bulk of activity in both erythrocytic and transmission-blocking assays. These compounds may present good leads for development of novel anti-malarials and add to the understanding of the chemical basis of the anti-parasitic activity in these classes of natural product

    Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 beta-(1,3)-Galactosyltransferase That Influences Seedling Development

    No full text
    Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a β-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a β-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in β-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 β-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development
    corecore