27 research outputs found
Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy
Background: Effective highly active antiretroviral therapy (HAART) reduces human immunodeficiency virus (HIV) replication, restores CD4 +T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8 +T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8 +T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV.Methods: Peripheral blood mononuclear cells (PBMC) were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ) or interleukin-2 (IL-2) were enumerated by ELISPOT and phenotyped by flow cytometry.Results and Conclusions: The magnitude of the HIV-specific CD8 +T cell response ranged from < .01 to approximately 1.0% of PBMC and was significantly greater in the group with detectable viral replication. Stronger responses reflected higher numbers of CD8 +CD45RA -effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8 +T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8 +T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years
Immunohaematological reference values in human immunodeficiency virus-negative adolescent and adults in rural northern Tanzania
<p>Abstract</p> <p>Background</p> <p>The amount of CD4 T cells is used for monitoring HIV progression and improvement, and to make decisions to start antiretroviral therapy and prophylactic drugs for opportunistic infections. The aim of this study was to determine normal reference values for CD4 T cells, lymphocytes, leucocytes and haemoglobin level in healthy, HIV negative adolescents and adults in rural northern Tanzania.</p> <p>Methods</p> <p>A cross sectional study was conducted from September 2006 to March 2007 in rural northern Tanzania. Participants were recruited from voluntary HIV counselling and testing clinics. Patients were counselled for HIV test and those who consented were tested for HIV. Clinical screening was done, and blood samples were collected for CD4 T cell counts and complete blood cell counts.</p> <p>Results</p> <p>We enrolled 102 participants, forty two (41.2%) males and 60 (58.8%) females. The mean age was 32.6 ± 95% CI 30.2–35.0. The mean absolute CD4 T cell count was 745.8 ± 95% CI 695.5–796.3, absolute CD8 T cells 504.6 ± 95% CI 461.7–547.5, absolute leukocyte count 5.1 ± 95% CI 4.8–5.4, absolute lymphocyte count 1.8 ± 95% CI 1.7–1.9, and haemoglobin level 13.2 ± 95% CI 12.7–13.7. Females had significantly higher mean absolute CD4 T cell count (p = 0.008), mean absolute CD8 T cell count (p = 0.009) and significantly lower mean haemoglobin level than males (p = 0.003)</p> <p>Conclusion</p> <p>Immunohaematological values found in this study were different from standard values for western countries. Females had significantly higher mean CD4 T cell counts and lower mean haemoglobin levels than males. This raises the issue of the appropriateness of the present reference values and guidelines for monitoring HIV/AIDS patients in Tanzania.</p
New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat
The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding
