953 research outputs found

    Primordial magnetic fields at preheating

    Full text link
    Using lattice techniques we investigate the generation of long range cosmological magnetic fields during a cold electroweak transition. We will show how magnetic fields arise, during bubble collisions, in the form of magnetic strings. We conjecture that these magnetic strings originate from the alignment of magnetic dipoles associated with EW sphaleron-like configurations. We also discuss the early thermalisation of photons and the turbulent behaviour of the scalar fields after tachyonic preheating.Comment: 7 pages. Talk presented at Lattice200

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Three "universal" mesoscopic Josephson effects

    Get PDF
    1. Introduction 2. Supercurrent from Excitation Spectrum 3. Excitation Spectrum from Scattering Matrix 4. Short-Junction Limit 5. Universal Josephson Effects 5.1 Quantum Point Contact 5.2 Quantum Dot 5.3 Disordered Point Contact (Average supercurrent, Supercurrent fluctuations)Comment: 21 pages, 2 figures; legacy revie

    Construction et classification de certaines solutions algébriques des systèmes de Garnier

    No full text
    22 pagesInternational audienceIn this paper, we classify all (complete) non elementary algebraic solutions of Garnier systems that can be constructed by Kitaev's method: they are deduced from isomonodromic deformations defined by pulling back a given fuchsian equation E by a family of ramified covers. We first introduce orbifold structures associated to a fuchsian equation. This allow to get a refined version of Riemann-Hurwitz formula and then to promtly deduce that E is hypergeometric. Then, we can bound exponents and degree of the pull-back maps and further list all possible ramification cases. This generalizes a result due to C. Doran for the Painleve VI case. We explicitely construct one of these solutions

    Full Counting Statistics of Superconductor--Normal-Metal Heterostructures

    Full text link
    The article develops a powerful theoretical tool to obtain the full counting statistics. By a slight extension of the standard Keldysh method we can access immediately all correlation functions of the current operator. Embedded in a quantum generalization of the circuit theory of electronic transport, we are able to study the full counting statistics of a large class of two-terminal contacts and multi-terminal structures, containing superconductors and normal metals as elements. The practical use of the method is demonstrated in many examples.Comment: 35 pages, contribution to "Quantum Noise", ed. by Yu.V. Nazarov and Ya.M. Blanter, minor changes in text, references adde

    Vegetation Response to the Climate Change in Polar Chukotka from 2.510-2.554 Ma BP

    Get PDF
    The response of vegetation to climate change in Polar Chukotka between 2.510 and 2.554 Ma was determined by a palynological study of sediment cores from Lake Elgygytgyn recovered during the international expedition "El'gygytgyn Drilling Project". Six pollen zones were defined for this interval, which spans marine isotope stages (MIS) 101 and 100. Pollen zones 1 and 2 (MIS 101) as well as zones 3 and 4 (MIS 100) indicate the presence of Larix and Larix-Betula forests during interglaciations. The plant communities reflected in the spectra of zone 3 represent the warmest climates during the early Gelasian Age. During MIS 100, the period of maximum climate cooling is marked by the regional presence of shrub and herb dominated tundra (pollen zone 5). During the interstade (MIS 100, zone 6), the vegetation was dominated by Larix forest tundra. Pollen zones 3 and 4, which have spectra more indicative of interglacial rather than glacial plant communities, are more consistent with climate of MIS 101 and not MIS 100, as suggested by the core's age model. The incorrect age assignment of the boundary between these stages indicates that the Lake El'gygytgyn age model needs revision.</jats:p

    Nonlinear Sigma Model for Disordered Media: Replica Trick for Non-Perturbative Results and Interactions

    Full text link
    In these lectures, given at the NATO ASI at Windsor (2001), applications of the replicas nonlinear sigma model to disordered systems are reviewed. A particular attention is given to two sets of issues. First, obtaining non-perturbative results in the replica limit is discussed, using as examples (i) an oscillatory behaviour of the two-level correlation function and (ii) long-tail asymptotes of different mesoscopic distributions. Second, a new variant of the sigma model for interacting electrons in disordered normal and superconducting systems is presented, with demonstrating how to reduce it, under certain controlled approximations, to known ``phase-only'' actions, including that of the ``dirty bosons'' model.Comment: 25 pages, Proceedings of the NATO ASI "Field Theory of Strongly Correlated Fermions and Bosons in Low - Dimensional Disordered Systems", Windsor, August, 2001; to be published by Kluwe

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    corecore