976 research outputs found
Black Hole Models of Quasars
Observations of active galactic nuclei are interpreted in terms of a theoretical model involving accretion onto a massive black hole. Optical quasars and Seyfert galaxies are associated with holes accreting near the Eddington rate and radio galaxies with sub-critical accretion. It is argued that magnetic fields are largely responsible for extracting energy and angular momentum from black holes and disks. Recent studies of electron-positron pair plasmas and their possible role in establishing the emergent X-ray spectrum are reviewed. The main evolutionary properties of active galactic nuclei can be interpreted in terms of a simple model in which black holes accrete gas at a rate dictated by the rate of gas supply which decreases with cosmic time. It may be worth searching for eclipsing binary black holes in lower power Seyferts
Recommended from our members
Observation of Excess J/ψ Yield at Very Low Transverse Momenta in Au+Au Collisions at sqrt[s_{NN}]=200 GeV and U+U Collisions at sqrt[s_{NN}]=193 GeV.
We report on the first measurements of J/ψ production at very low transverse momentum (p_{T}<0.2 GeV/c) in hadronic Au+Au collisions at sqrt[s_{NN}]=200 GeV and U+U collisions at sqrt[s_{NN}]=193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at midrapidity in Au+Au (U+U) collisions reaches about 24 (52) for p_{T}<0.05 GeV/c in the 60%-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low p_{T} range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semicentral collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low p_{T} originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon plasma
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
Recommended from our members
Measurement of inclusive J/ψ suppression in Au+Au collisions at sNN=200 GeV through the dimuon channel at STAR
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at sNN=200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT>5 GeV/c relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP
Recommended from our members
Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p+Au and d+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data
Recommended from our members
Measurements of the transverse-momentum-dependent cross sections of J /ψ production at mid-rapidity in proton+proton collisions at s =510 and 500 GeV with the STAR detector
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pTJ/ψ) using the μ+μ- and e+e- decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ- channel is for
Recommended from our members
Bulk properties of the system formed in Au+Au collisions at sNN =14.5 GeV at the BNL STAR detector
We report systematic measurements of bulk properties of the system created in Au+Au collisions at sNN=14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum spectra of π±, K±, and p(p) are studied at midrapidity (|y|<0.1) for nine centrality intervals. The centrality, transverse momentum (pT), and pseudorapidity (η) dependence of inclusive charged particle elliptic flow (v2), and rapidity-odd charged particles directed flow (v1) results near midrapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at sNN=2.76 TeV. The results at sNN=14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5-GeV energy fills the gap in μB, which is of the order of 100 MeV, between sNN=11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Written information about individual medicines for consumers.
Medicines are the most common intervention in most health services. As with all treatments, those taking medicines need sufficient information: to enable them to take and use the medicines effectively, to understand the potential harms and benefits, and to allow them to make an informed decision about taking them. Written medicines information, such as a leaflet or provided via the Internet, is an intervention that may meet these purposes
- …
