25 research outputs found

    Quenching 2D Quantum Gravity

    Full text link
    We simulate the Ising model on a set of fixed random ϕ3\phi^3 graphs, which corresponds to a {\it quenched} coupling to 2D gravity rather than the annealed coupling that is usually considered. We investigate the critical exponents in such a quenched ensemble and compare them with measurements on dynamical ϕ3\phi^3 graphs, flat lattices and a single fixed ϕ3\phi^3 graph.Comment: 8 page

    Adjoint Wilson Line in SU(2) Lattice Gauge Theory

    Full text link
    The behavior of the adjoint Wilson line in finite-temperature, SU(2)SU(2), lattice gauge theory is discussed. The expectation value of the line and the associated excess free energy reveal the response of the finite-temperature gauge field to the presence of an adjoint source. The value of the adjoint line at the critical point of the deconfining phase transition is highlighted. This is not calculable in weak or strong coupling. It receives contributions from all scales and is nonanalytic at the critical point. We determine the general form of the free energy. It includes a linearly divergent term that is perturbative in the bare coupling and a finite, nonperturbative piece. We use a simple flux tube model to estimate the value of the nonperturbative piece. This provides the normalization needed to estimate the behavior of the line as one moves along the critical curve into the weak coupling region.Comment: 21 pages, no figures, Latex/Revtex 3, UCD-93-1

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering

    Get PDF
    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.Comment: Matches published version, JHEP style, 36 pages and 2 figures, minor correction
    corecore