2,386 research outputs found

    Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly

    Get PDF
    Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either \alpha_s or q_T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q_T=0, including the normalization and first-order \alpha_s(q_*) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Parton Fragmentation within an Identified Jet at NNLL

    Full text link
    The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by "fragmenting jet functions". We calculate the one-loop matching coefficients J_{ij} that relate the fragmenting jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients J_{ij} and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance where we measure the momentum fraction of the pi+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio

    On form factors in N=4 sym

    Full text link
    In this paper we study the form factors for the half-BPS operators OI(n)\mathcal{O}^{(n)}_I and the N=4\mathcal{N}=4 stress tensor supermultiplet current WABW^{AB} up to the second order of perturbation theory and for the Konishi operator K\mathcal{K} at first order of perturbation theory in N=4\mathcal{N}=4 SYM theory at weak coupling. For all the objects we observe the exponentiation of the IR divergences with two anomalous dimensions: the cusp anomalous dimension and the collinear anomalous dimension. For the IR finite parts we obtain a similar situation as for the gluon scattering amplitudes, namely, apart from the case of WABW^{AB} and K\mathcal{K} the finite part has some remainder function which we calculate up to the second order. It involves the generalized Goncharov polylogarithms of several variables. All the answers are expressed through the integrals related to the dual conformal invariant ones which might be a signal of integrable structure standing behind the form factors.Comment: 35 pages, 7 figures, LATEX2

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Heavy quark flavour dependence of multiparticle production in QCD jets

    Get PDF
    After inserting the heavy quark mass dependence into QCD partonic evolution equations, we determine the mean charged hadron multiplicity and second multiplicity correlators of jets produced in high energy collisions. We thereby extend the so-called dead cone effect to the phenomenology of multiparticle production in QCD jets and find that the average multiplicity of heavy-quark initiated jets decreases significantly as compared to the massless case, even taking into account the weak decay products of the leading primary quark. We emphasize the relevance of our study as a complementary check of bb-tagging techniques at hadron colliders like the Tevatron and the LHC.Comment: Version revised, accepted for publication in JHEP, 21 pages and 7 figure

    On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes

    Full text link
    We propose a first implementation of the integrand-reduction method for two-loop scattering amplitudes. We show that the residues of the amplitudes on multi-particle cuts are polynomials in the irreducible scalar products involving the loop momenta, and that the reduction of the amplitudes in terms of master integrals can be realized through polynomial fitting of the integrand, without any apriori knowledge of the integral basis. We discuss how the polynomial shapes of the residues determine the basis of master integrals appearing in the final result. We present a four-dimensional constructive algorithm that we apply to planar and non-planar contributions to the 4- and 5-point MHV amplitudes in N=4 SYM. The technique hereby discussed extends the well-established analogous method holding for one-loop amplitudes, and can be considered a preliminary study towards the systematic reduction at the integrand-level of two-loop amplitudes in any gauge theory, suitable for their automated semianalytic evaluation.Comment: 26 pages, 11 figure

    The Quark Beam Function at NNLL

    Get PDF
    In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale \mu_B << Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At \mu_B, the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos fixed; v3: journal versio
    corecore