2,113 research outputs found
Online fabrication and characterization of capsule populations with a flow-focusing microfluidic system
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.We have designed a microfluidic system that combines a double flow-focusing setup for calibrated capsule fabrication with a microchannel for the characterization of their mechanical properties. The double flow-focusing system consists of a first Y junction to create the microdroplets and of a second Y junction to introduce the cross-linking agent allowing the membrane formation. The human serum albumin (HSA) aqueous solution for the dispersed solution, hydrophobic phase for the continuous solution and cross-linking agent solution are introduced by means of syringe pumps. A wavy channel after the second junction allows to control the reticulation time. A cylindrical microchannel then enables to deform and characterize the capsules formed. The mechanical properties of the capsule membrane are obtained by inverse analysis (Chu et al. 2011). The results show that the drop size increases with the flow rate ratio between the central and lateral channels and does not change much regardless of the flow rate of the reticulation phase. The mean shear modulus of the capsules fabricated after 23 s of reticulation is of the order of the surface tension of HSA solution with Dragoxat indicating that the reticulation time is too short to form an elastic membrane around the droplet. When the reticulation time is increased to 60 s, the membrane shear modulus is multiplied by a factor of 3 confirming that a solid membrane has formed around the drop
On a kinetic model for a simple market economy
In this paper, we consider a simple kinetic model of economy involving both
exchanges between agents and speculative trading. We show that the kinetic
model admits non trivial quasi-stationary states with power law tails of Pareto
type. In order to do this we consider a suitable asymptotic limit of the model
yielding a Fokker-Planck equation for the distribution of wealth among
individuals. For this equation the stationary state can be easily derived and
shows a Pareto power law tail. Numerical results confirm the previous analysis
Extended RDF: Computability and Complexity Issues
ERDF stable model semantics is a recently proposed semantics for
ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs.
In this paper, we elaborate on the computability and complexity issues of the
ERDF stable model semantics. Based on the undecidability result of ERDF
stable model semantics, decidability under this semantics cannot be achieved,
unless ERDF ontologies of restricted syntax are considered. Therefore, we
propose a slightly modified semantics for ERDF ontologies, called ERDF #n-
stable model semantics. We show that entailment under this semantics is, in
general, decidable and also extends RDFS entailment. Equivalence statements
between the two semantics are provided. Additionally, we provide algorithms
that compute the ERDF #n-stable models of syntax-restricted and general
ERDF ontologies. Further, we provide complexity results for the ERDF #nstable
model semantics on syntax-restricted and general ERDF ontologies.
Finally, we provide complexity results for the ERDF stable model semantics
on syntax-restricted ERDF ontologies
Brief Report: AIP Mutation in Pituitary Adenomas in the 18th Century and Today
From New England Journal of Medicine, Volume 364, issue 1, p.43-50. Copyright © (2011) Massachusetts Medical Society. Reprinted with permission.Gigantism results when a growth hormone–secreting pituitary adenoma is present
before epiphyseal fusion. In 1909, when Harvey Cushing examined the skeleton of
an Irish patient who lived from 1761 to 1783,1-3 he noted an enlarged pituitary
fossa. We extracted DNA from the patient’s teeth and identified a germline mutation
in the aryl hydrocarbon–interacting protein gene (AIP). Four contemporary
Northern Irish families who presented with gigantism, acromegaly, or prolactinoma
have the same mutation and haplotype associated with the mutated gene. Using
coalescent theory, we infer that these persons share a common ancestor who lived
about 57 to 66 generations earlier
Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization
One fundamental requirement for quantum computation is to perform universal
manipulations of quantum bits at rates much faster than the qubit's rate of
decoherence. Recently, fast gate operations have been demonstrated in logical
spin qubits composed of two electron spins where the rapid exchange of the two
electrons permits electrically controllable rotations around one axis of the
qubit. However, universal control of the qubit requires arbitrary rotations
around at least two axes. Here we show that by subjecting each electron spin to
a magnetic field of different magnitude we achieve full quantum control of the
two-electron logical spin qubit with nanosecond operation times. Using a single
device, a magnetic field gradient of several hundred milliTesla is generated
and sustained using dynamic nuclear polarization of the underlying Ga and As
nuclei. Universal control of the two-electron qubit is then demonstrated using
quantum state tomography. The presented technique provides the basis for single
and potentially multiple qubit operations with gate times that approach the
threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary
fil
Estimation of conditional laws given an extreme component
Let be a bivariate random vector. The estimation of a probability of
the form is challenging when is large, and a
fruitful approach consists in studying, if it exists, the limiting conditional
distribution of the random vector , suitably normalized, given that
is large. There already exists a wide literature on bivariate models for which
this limiting distribution exists. In this paper, a statistical analysis of
this problem is done. Estimators of the limiting distribution (which is assumed
to exist) and the normalizing functions are provided, as well as an estimator
of the conditional quantile function when the conditioning event is extreme.
Consistency of the estimators is proved and a functional central limit theorem
for the estimator of the limiting distribution is obtained. The small sample
behavior of the estimator of the conditional quantile function is illustrated
through simulations.Comment: 32 pages, 5 figur
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells
Glycosylation is a highly complex process to produce a diverse repertoire of
cellular glycans that are attached to proteins and lipids. Glycans are involved
in fundamental biological processes, including protein folding and clearance,
cell proliferation and apoptosis, development, immune responses, and
pathogenesis. One of the major types of glycans, N-linked glycans, is formed by
sequential attachments of monosaccharides to proteins by a limited number of
enzymes. Many of these enzymes can accept multiple N-linked glycans as
substrates, thereby generating a large number of glycan intermediates and their
intermingled pathways. Motivated by the quantitative methods developed in
complex network research, we investigated the large-scale organization of such
N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation
pathways are extremely modular, and are composed of cohesive topological
modules that directly branch from a common upstream pathway of glycan
synthesis. This unique structural property allows the glycan production between
modules to be controlled by the upstream region. Although the enzymes act on
multiple glycan substrates, indicating cross-talk between modules, the impact
of the cross-talk on the module-specific enhancement of glycan synthesis may be
confined within a moderate range by transcription-level control. The findings
of the present study provide experimentally-testable predictions for
glycosylation processes, and may be applicable to therapeutic glycoprotein
engineering
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
- …
