783 research outputs found

    Self-terminating re-entrant cardiac arrhythmias: quantitative characterization

    Get PDF
    Atrial and ventricular tachyarrhythmia are often sustained by re-entrant propagation, and explained by deterministic models. A quantitative, stochastic description of self-termination provides an alternative to the current paradigm for re-entrant tachyarrhythmia - that of triggers and a substrate, modelled by parametrically heterogeneous deterministic partial differential equations. Atrial and ventricular data was from recordings obtained during routine clinical monitoring and treatment, either noninvasively or invasively. Atrial and ventricular tachycardia are characterised by their initiation times and durations, re-presented as instantaneous rates, whose means estimate transition probabilities/s for onset and termination. These estimated probabilities range from 10(-9) to 10(-1)/s

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Youth’s narratives about family members smoking: parenting the parent- it’s not fair!

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful cancer prevention policies and programming for youth must be based on a solid understanding of youth’s conceptualization of cancer and cancer prevention. Accordingly, a qualitative study examining youth’s perspectives of cancer and its prevention was undertaken. Not surprisingly, smoking (i.e., tobacco cigarette smoking) was one of the dominant lines of discourse in the youth’s narratives. This paper reports findings of how youth conceptualize smoking with attention to their perspectives on parental and family-related smoking issues and experiences.</p> <p>Methods</p> <p>Seventy-five Canadian youth ranging in age from 11–19 years participated in the study. Six of the 75 youth had a history of smoking and 29 had parents with a history of smoking. Youth were involved in traditional ethnographic methods of interviewing and photovoice. Data analysis involved multiple levels of analysis congruent with ethnography.</p> <p>Results</p> <p>Youth’s perspectives of parents and other family members’ cigarette smoking around them was salient as represented by the theme: <it>It’s not fair.</it> Youth struggled to make sense of why parents would smoke around their children and perceived their smoking as an unjust act. The theme was supported by four subthemes: <it>1) parenting the parent about the dangers of smoking; 2) the good/bad parent; 3) distancing family relationships; and 4) the prisoner</it>. Instead of being <it>talked to</it> about smoking it was more common for youth to share stories of <it>talking to</it> their parents about the dangers of smoking. Parents who did not smoke were seen by youth as the good parent, as opposed to the bad parent who smoked. Smoking was an agent that altered relationships with parents and other family members. Youth who lived in homes where they were exposed to cigarette smoke felt like a trapped prisoner.</p> <p>Conclusions</p> <p>Further research is needed to investigate youth’s perceptions about parental cigarette smoking as well as possible linkages between youth exposed to second hand smoke in their home environment and emotional and lifestyle-related health difficulties. Results emphasize the relational impact of smoking when developing anti-tobacco and cancer prevention campaigns. Recognizing the potential toll that second-hand smoke can have on youth’s emotional well-being, health care professionals are encouraged to give youth positive messages in coping with their parents’ smoking behaviour.</p

    Testing for ocean acidification during the Early Toarcian using δ44/40Ca and δ88/86Sr

    Get PDF
    During the Early Toarcian, volcanic gases released by the Karoo-Ferrar large igneous province are widely believed to have caused severe environmental disturbances, including ocean acidification. Here we show records of δ Ca and δ Sr through the Early Toarcian, as recorded in three groups of biogenic calcite: Megateuthididae belemnites, Passaloteuthididae belemnites, and brachiopods of the species Soaresirhynchia bouchardi. We evaluate the data to eliminate the influence on isotopic composition of varying temperature, calcification rate, and salinity, through the section that may mask the environmental signals. Neither δ Ca nor δ Sr show negative isotope excursions across the suggested acidification interval as would be expected had acidification occurred. A profile of δ B, re-interpreted from a published study, shows no variation through the interval. Taken together, these data provide little support for ocean acidification at this time. In our belemnites, values of δ Sr are independent of temperature or Sr/Ca. For brachiopods, too few data are available to determine whether such dependences exist. Values of δ Ca show a weak temperature control of magnitude +0.020 ± 0.004 ‰/°C (2 s.d.). In belemnites, δ Ca also correlates positively with Mg/Ca and Sr/Ca. 44/40 88/86 44/40 88/86 11 88/86 44/40 44/4

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    Extrinsic primary afferent signalling in the gut

    Get PDF
    Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.Australian National Health and Medical Research Counci
    corecore