19 research outputs found
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Analysis of Bloch Surface Waves at the Interface Between Two Semi-infinite Rugate Filters with Symmetric Refractive Index Profiles
Low-energy acoustic plasmons at metal surfaces RID B-5938-2008 RID C-8602-2009
Nearly two-dimensional (2D) metallic systems formed in charge inversion layers(1) and artificial layered materials(2,3) permit the existence of low-energy collective excitations(4,5), called 2D plasmons, which are not found in a three-dimensional (3D) metal. These excitations have caused considerable interest because their low energy allows them to participate in many dynamical processes involving electrons and phonons(3), and because they might mediate the formation of Cooper pairs in high-transition-temperature superconductors(6). Metals often support electronic states that are confined to the surface, forming a nearly 2D electron-density layer. However, it was argued that these systems could not support low-energy collective excitations because they would be screened out by the underlying bulk electrons(7). Rather, metallic surfaces should support only conventional surface plasmons(8) - higher-energy modes that depend only on the electron density. Surface plasmons have important applications in microscopy(9,10) and sub-wavelength optics(11-13), but have no relevance to the low-energy dynamics. Here we show that, in contrast to expectations, a low-energy collective excitation mode can be found on bare metal surfaces. The mode has an acoustic ( linear) dispersion, different to the q(parallel to)(1/2) dependence of a 2D plasmon, and was observed on Be( 0001) using angle-resolved electron energy loss spectroscopy. First-principles calculations show that it is caused by the coexistence of a partially occupied quasi-2D surface-state band with the underlying 3D bulk electron continuum and also that the non-local character of the dielectric function prevents it from being screened out by the 3D states. The acoustic plasmon reported here has a very general character and should be present on many metal surfaces. Furthermore, its acoustic dispersion allows the confinement of light on small surface areas and in a broad frequency range, which is relevant for nano-optics and photonics applications
