21 research outputs found

    Evidence-based diagnosis and treatment of macrophage activation syndrome in systemic juvenile idiopathic arthritis

    Get PDF
    BACKGROUND: Macrophage activation syndrome (MAS) is a severe and potentially lethal complication of several inflammatory diseases but seems particularly linked to systemic juvenile idiopathic arthritis (sJIA). Standardized diagnostic and treatment guidelines for MAS in sJIA are currently lacking. The aim of this systematic literature review was to evaluate currently available literature on diagnostic criteria for MAS in sJIA and provide an overview of possible biomarkers for diagnosis, disease activity and treatment response and recent advances in treatment. METHODS: A systematic literature search was performed in MEDLINE, EMBASE and Cochrane. 495 papers were identified. Potentially relevant papers were selected by 3 authors after which full text screening was performed. All selected papers were evaluated by at least two independent experts for validity and level of evidence according to EULAR guidelines. RESULTS: 27 papers were included: 7 on diagnosis, 9 on biomarkers and 11 on treatment. Systematic review of the literature confirmed that there are no validated diagnostic criteria for MAS in sJIA. The preliminary Ravelli criteria, with the addition of ferritin, performed well in a large retrospective case-control study. Recently, an international consortium lead by PRINTO proposed a new set of diagnostic criteria able to distinguish MAS from active sJIA and/or infection with superior performance. Other promising diagnostic biomarkers potentially distinguish MAS complicating sJIA from primary and virus-associated hemophagocytic lymphohistiocytosis. The highest level of evidence for treatment comes from case-series. High dose corticosteroids with or without cyclosporine A were frequently reported as first-line therapy. From the newer treatment modalities, promising responses have been reported with anakinra. CONCLUSION: MAS in sJIA seems to be diagnosed best by the recently proposed PRINTO criteria, although prospective validation is needed. Novel promising biomarkers for sJIA related MAS are in need of prospective validation as well, and are not widely available yet. Currently, treatment of MAS in sJIA relies more on experience than evidence based medicine. Taking into account the severity of MAS and the scarcity of evidence, early expert consultation is recommended as soon as MAS is suspected

    Impaired B lymphopoiesis in old age: a role for inflammatory B cells?

    No full text
    Continued generation of new B cells within the bone marrow is required throughout life. However, in old age, B lymphopoiesis is inhibited at multiple developmental stages from hematopoietic stem cells through the late stages of new B cell generation. While changes in B cell precursor subsets, as well as alterations in the supporting bone marrow microenvironment, in old age have been known for the last 20 years, only more recently have insights into the cellular and molecular mechanisms responsible become clarified. Our recent discovery that B cells in aged mice are pro-inflammatory and can diminish B cell generation within the bone marrow suggests a potential mechanism of inappropriate “B cell feedback” which contributes to a bone marrow microenvironment unfavorable to B lymphopoiesis. We hypothesize that the consequences of a pro-inflammatory microenvironment in old age are (1) reduced B cell generation and (2) alteration in the “read-out” of the antibody repertoire. Both of these likely ensue from reduced expression of the surrogate light chain (λ5 + VpreB) and consequently reduced expression of the pre-B cell receptor (preBCR), critical to pre-B cell expansion and Vh selection. In old age, B cell development may progressively be diverted into a preBCR-compromised pathway. These abnormalities in B lymphopoiesis likely contribute to the poor humoral immunity seen in old age
    corecore