29 research outputs found

    Potential for large-scale CO2 removal via enhanced rock weathering with croplands

    Get PDF
    Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2,3,4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80–180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land–ocean transfer of weathered products

    Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows

    No full text
    The rheological properties of sodium alginate in salt-free solutions were studied by steady shear, dynamic oscillatory and extensional measurements. This biopolymer consists of mannuronic and guluronic acid residues that give a polyelectrolyte character. We applied the scaling theories and checked their accordance with polyelectrolyte behaviour for low concentrations with a shift to neutral polymer behaviour at larger concentrations. This nature was supported by the effect of the concentration on the specific viscosity, the relaxation times from steady shear and the longest relaxation times from small amplitude oscillatory shear (SAOS) measurements. To analyze the extensional behaviour of the samples, we conducted a study of dimensionless numbers and time scales where filament thinning driven by viscous, capillary or elastic forces is at play. We conclude that an exponential filament thinning followed by breakup results in the best regimes that describe the experimental data. Besides, the data pointed out that alginate in salt-free concentrated solutions shows strain thinning of the extensional viscosity and chain rigidity, behaviours that cannot be inferred from the shear rheometry.This research was supported by funds from the European Research Council (ERC). Project MYCAP (258984) STAR TING GRANTS 2010
    corecore