7,104 research outputs found
An unusual occurrence of ultramafic and mafic rocks north of Mt Bischoff, Tasmania
Plagioclase-bearing harzburgite, plagioclase lherzolite, basalt and dolerite intrude a sequence of mudstone, greywacke, pillowed basalt and chert in the Arthur River valley north of Mt Bischoff. The ultramafic rocks are concordant bodies characterised by absence of internal deformation structures, abundant primary mineral assemblages and cumulate textures. The ultramafics were most probably intruded as magma. Fine- to coarse-grained dolerite were intruded in the same zone, probably as dykes
A dusty pinwheel nebula around the massive star WR 104
Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate
precursors to the supernova terminating their brief lives. The existence of
dust shells around such stars has been enigmatic since their discovery some 30
years ago; the intense radiation field from the star should be inimical to dust
survival. Although dust-creation models, including those involving interacting
stellar winds from a companion star, have been put forward, high-resolution
observations are required to understand this phenomena. Here we present
resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with
novel imaging techniques, revealing detail on scales corresponding to about 40
AU at the star. Our maps show that the dust forms a spatially confined stream
following precisely a linear (or Archimedian) spiral trajectory. Images taken
at two separate epochs show a clear rotation with a period of 220 +/- 30 days.
Taken together, these findings prove that a binary star is responsible for the
creation of the circumstellar dust, while the spiral plume makes WR 104 the
prototype of a new class of circumstellar nebulae unique to interacting wind
systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08
Experiments on Multidimensional Solitons
This article presents an overview of experimental efforts in recent years
related to multidimensional solitons in Bose-Einstein condensates. We discuss
the techniques used to generate and observe multidimensional nonlinear waves in
Bose-Einstein condensates with repulsive interactions. We further summarize
observations of planar soliton fronts undergoing the snake instability, the
formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez
(Springer-Verlag
Gerasimov-Drell-Hearn Sum Rule and the Discrepancy between the New CLAS and SAPHIR Data
Contribution of the K^+\Lambda channel to the Gerasimov-Drell-Hearn (GDH) sum
rule has been calculated by using the models that fit the recent SAPHIR or CLAS
differential cross section data. It is shown that the two data sets yield quite
different contributions. Contribution of this channel to the forward spin
polarizability of the proton has been also calculated. It is also shown that
the inclusion of the recent CLAS C_x and C_z data in the fitting data base does
not significantly change the result of the present calculation. Results of the
fit, however, reveal the role of the S_{11}(1650), P_{11}(1710), P_{13}(1720),
and P_{13}(1900) resonances for the description of the C_x and C_z data. A
brief discussion on the importance of these resonances is given. Measurements
of the polarized total cross section \sigma_{TT'} by the CLAS, LEPS, and MAMI
collaborations are expected to verify this finding.Comment: 15 pages, 8 figure
The SCottish Alcoholic Liver disease Evaluation: a population-level matched cohort study of hospital-based costs, 1991-2011
Studies assessing the costs of alcoholic liver disease are lacking. We aimed to calculate the costs of hospitalisations before and after diagnosis compared to population controls matched by age, sex and socio-economic deprivation. We aimed to use population level data to identify a cohort of individuals hospitalised for the first time with alcoholic liver disease in Scotland between 1991 and 2011.Incident cases were classified by disease severity, sex, age group, socio-economic deprivation and year of index admission. 5 matched controls for every incident case were identified from the Scottish population level primary care database.
Hospital costs were calculated for both cases and controls using length of stay from morbidity records and hospital-specific daily rates by specialty. Remaining lifetime costs were estimated using parametric survival models and predicted annual costs. 35,208 incident alcoholic liver disease hospitalisations were identified. Mean annual hospital costs for cases were 2.3 times that of controls pre diagnosis (£804 higher) and 10.2 times (£12,774 higher) post diagnosis. Mean incident admission cost was £6,663. Remaining lifetime cost for a male, 50-59 years old, living in the most deprived area diagnosed with acoholic liver disease was estimated to be £65,999 higher than the matched controls (£12,474 for 7.43 years remaining life compared to £1,224 for 21.8 years). In Scotland, alcoholic liver disease diagnosis is associated with significant increases in admissions to hospital both before and after diagnosis.
Our results provide robust population level estimates of costs of alcoholic liver disease for the purposes of health-care delivery, planning and future cost-effectiveness analyses
A broad distribution of the alternative oxidase in microsporidian parasites
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome
Quantum interference and Klein tunneling in graphene heterojunctions
The observation of quantum conductance oscillations in mesoscopic systems has
traditionally required the confinement of the carriers to a phase space of
reduced dimensionality. While electron optics such as lensing and focusing have
been demonstrated experimentally, building a collimated electron interferometer
in two unconfined dimensions has remained a challenge due to the difficulty of
creating electrostatic barriers that are sharp on the order of the electron
wavelength. Here, we report the observation of conductance oscillations in
extremely narrow graphene heterostructures where a resonant cavity is formed
between two electrostatically created bipolar junctions. Analysis of the
oscillations confirms that p-n junctions have a collimating effect on
ballistically transmitted carriers. The phase shift observed in the conductance
fringes at low magnetic fields is a signature of the perfect transmission of
carriers normally incident on the junctions and thus constitutes a direct
experimental observation of ``Klein Tunneling.''Comment: 13 pages and 6 figures including supplementary information. The paper
has been modified in light of new theoretical results available at
arXiv:0808.048
Tuning a Circular p-n Junction in Graphene from Quantum Confinement to Optical Guiding
The motion of massless Dirac-electrons in graphene mimics the propagation of
photons. This makes it possible to control the charge-carriers with components
based on geometrical-optics and has led to proposals for an all-graphene
electron-optics platform. An open question arising from the possibility of
reducing the component-size to the nanometer-scale is how to access and
understand the transition from optical-transport to quantum-confinement. Here
we report on the realization of a circular p-n junction that can be
continuously tuned from the nanometer-scale, where quantum effects are
dominant, to the micrometer scale where optical-guiding takes over. We find
that in the nanometer-scale junction electrons are trapped in states that
resemble atomic-collapse at a supercritical charge. As the junction-size
increases, the transition to optical-guiding is signaled by the emergence of
whispering-gallery modes and Fabry-Perot interference. The creation of tunable
junctions that straddle the crossover between quantum-confinement and
optical-guiding, paves the way to novel design-architectures for controlling
electronic transport.Comment: 16 pages, 4 figure
Fluctuations in granular gases
A driven granular material, e.g. a vibrated box full of sand, is a stationary
system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such
a system. Here we present numerical and analytical results concerning energy
and injected power fluctuations. In the first part we explain how the study of
the probability density function (pdf) of the fluctuations of total energy is
related to the characterization of velocity correlations. Two different regimes
are addressed: the gas driven at the boundaries and the homogeneously driven
gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of
homogeneity in hydrodynamics profiles, even in the absence of velocity
correlations, the fluctuations of total energy are non-trivial and may lead to
erroneous conclusions about the role of correlations. In the second part of the
chapter we take into consideration the fluctuations of injected power in driven
granular gas models. Recently, real and numerical experiments have been
interpreted as evidence that the fluctuations of power injection seem to
satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an
alternative interpretation of such results which invalidates the
Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and
using techniques from large deviation theory, the general validity of a
Fluctuation Relation for power injection in driven granular gases is
questioned. Finally a functional is defined using the Lebowitz-Spohn approach
for Markov processes applied to the linear inelastic Boltzmann equation
relevant to describe the motion of a tracer particle. Such a functional results
to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
- …
