67 research outputs found

    Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels?

    Get PDF
    BACKGROUND: In the Arctic, polar bears (Ursus maritimus) bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. METHODS: We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59) and kidney (n = 57) tissues. RESULTS: Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p < 0.02) and a similar trend was found for lipid granulomas (p = 0.07). Liver mercury levels were significantly lower in individuals with portal bile duct proliferation/fibrosis (p = 0.007) and a similar trend was found for proximal convoluted tubular hyalinisation in renal tissue (p = 0.07). CONCLUSION: Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs

    Bordetella Adenylate Cyclase Toxin Mobilizes Its β2 Integrin Receptor into Lipid Rafts to Accomplish Translocation across Target Cell Membrane in Two Steps

    Get PDF
    Bordetella adenylate cyclase toxin (CyaA) binds the αMβ2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin ‘translocation intermediate’, which can be ‘locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the ‘intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the ‘translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol

    Calf health from birth to weaning. III. housing and management of calf pneumonia

    Get PDF
    Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning). The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning) can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF

    Eight Cases of Canine Lymphomatoid Granulomatosis

    No full text

    Weimaraner

    No full text
    corecore