1,411 research outputs found
The effect of polyethylene glycol Mw 400 and 600 on stability of Shellac Waxfree
The effect of polyethylene glycol (PEG) having molecular weight of 400 and 600 on stability of shellac waxfree prepared by solvent-evaporation method was reported in the present paper. The stability of shellac was tested by life under heat at 125 °C for 10,30,90, and 180 minutes. It was found that that stability of shellac decreased with heating time at 125 °C. PEG400 gave the most stable effect of shellac for 30 minutes of heating, whereas at 90 minutes and above PEG600 gave the most effect of shellac stability as shown by insoluble solid test and FTIR. The WVTR showed that water vapour barrier properties of PEG600/shellac was beter than that of PEG400/shellac system
Configurational Entropy and Diffusivity of Supercooled Water
We calculate the configurational entropy S_conf for the SPC/E model of water
for state points covering a large region of the (T,rho) plane. We find that (i)
the (T,rho) dependence of S_conf correlates with the diffusion constant and
(ii) that the line of maxima in S_conf tracks the line of density maxima. Our
simulation data indicate that the dynamics are strongly influenced by S_conf
even above the mode-coupling temperature T_MCT(rho).Comment: Significant update of reference
Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor
A fundamental question of high-temperature superconductors is the nature of
the pseudogap phase which lies between the Mott insulator at zero doping and
the Fermi liquid at high doping p. Here we report on the behaviour of charge
carriers near the zero-temperature onset of that phase, namely at the critical
doping p* where the pseudogap temperature T* goes to zero, accessed by
investigating a material in which superconductivity can be fully suppressed by
a steady magnetic field. Just below p*, the normal-state resistivity and Hall
coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the
temperature drops below T*, revealing a change in the Fermi surface with a
large associated drop in conductivity. At p*, the resistivity shows a linear
temperature dependence as T goes to zero, a typical signature of a quantum
critical point. These findings impose new constraints on the mechanisms
responsible for inelastic scattering and Fermi surface transformation in
theories of the pseudogap phase.Comment: 24 pages, 6 figures. Published in Nature Physics. Online at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1109.htm
A mixed methods approach to evaluating community drug distributor performance in the control of neglected tropical diseases
BACKGROUND: Trusted literate, or semi-literate, community drug distributors (CDDs) are the primary implementers in integrated preventive chemotherapy (IPC) programmes for Neglected Tropical Disease (NTD) control. The CDDs are responsible for safely distributing drugs and for galvanising communities to repeatedly, often over many years, receive annual treatment, create and update treatment registers, monitor for side-effects and compile treatment coverage reports. These individuals are 'volunteers' for the programmes and do not receive remuneration for their annual work commitment. METHODS: A mixed methods approach, which included pictorial diaries to prospectively record CDD use of time, structured interviews and focus group discussions, was used to triangulate data on how 58 CDDs allocated their time towards their routine family activities and to NTD Programme activities in Uganda. The opportunity costs of CDD time were valued, performance assessed by determining the relationship between time and programme coverage, and CDD motivation for participating in the programme was explored. RESULTS: Key findings showed approximately 2.5 working weeks (range 0.6-11.4 working weeks) were spent on NTD Programme activities per year. The amount of time on NTD control activities significantly increased between the one and three deliveries that were required within an IPC campaign. CDD time spent on NTD Programme activities significantly reduced time available for subsistence and income generating engagements. As CDDs took more time to complete NTD Programme activities, their treatment performance, in terms of validated coverage, significantly decreased. Motivation for the programme was reported as low and CDDs felt undervalued. CONCLUSIONS: CDDs contribute a considerable amount of opportunity cost to the overall economic cost of the NTD Programme in Uganda due to the commitment of their time. Nevertheless, programme coverage of at least 75 %, as required by the World Health Organisation, is not being achieved and vulnerable individuals may not have access to treatment as a consequence of sub-optimal performance by the CDDs due to workload and programmatic factors
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
The Nernst effect in metals is highly sensitive to two kinds of phase
transition: superconductivity and density-wave order. The large positive Nernst
signal observed in hole-doped high-Tc superconductors above their transition
temperature Tc has so far been attributed to fluctuating superconductivity.
Here we show that in some of these materials the large Nernst signal is in fact
caused by stripe order, a form of spin / charge modulation which causes a
reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of
stripe order causes the Nernst signal to go from small and negative to large
and positive, as revealed either by lowering the hole concentration across the
quantum critical point in Nd-LSCO, or lowering the temperature across the
ordering temperature in Eu-LSCO. In the latter case, two separate peaks are
resolved, respectively associated with the onset of stripe order at high
temperature and superconductivity near Tc. This sensitivity to Fermi-surface
reconstruction makes the Nernst effect a promising probe of broken symmetry in
high-Tc superconductors
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Presentation of glaucoma in the greater Accra Metropolitan Area of Ghana
Background: This study addresses the prevalence and clinical presentation of patients with primary open angle glaucoma (POAG) in the greater Accra metropolitan area.Methods: This is a retrospective case series of 455 patients (813 eyes) at the Emmanuel Eye Clinic. Patients were diagnosed from May 2008 to Nov 2011. The definition of POAG conformed to the International Society of Geographical and Epidemiological Ophthalmology (ISGEO) criteria. Information collected included basic demographic data, distribution of glaucoma subtypes, measured intraocular pressure (IOP), best corrected visual acuity (BCVA) and optic disc measurements.Results: Nearly 24% presented blind in at least one eye. The average age was 56.7 +/-16.7 years and the average IOP was 33.9 mmHg +/- 12.7 mmHg for right eyes and 33.5 mmHg +/-12.0 mmHg for left eyes. Themean vertical cup to disc ratio (vCDR) was 0.83 for right eyes versus 0.82 for left eyes. A total of 32 patients (53 eyes) were diagnosed with normal tension glaucoma (NTG). Statistically significant differences between the NTG and high tension groups included age (45.3 +/- 16.7 vs. 56.7 +/-16.7, p<0.001), mean IOP (19.1 mmHg +/- 4.5 mmHg vs. 33.7 +/- 12.4 mmHg,p<0.001) and mean vCDR (0.76 +/- 0.17 vs. 0.83 +/- 0.10, p<0.01). Comparing age-matched NTG patients with high tension glaucoma patients showed no significant difference in vCDR.Conclusions: The clinical presentation of POAG at the Emmanuel Eye Center is characterized by elevated IOP and grossly advanced optic neuropathy. Significant differences between high tension glaucoma and NTG were identified.Keywords: Primary Open Angle Glaucoma, Normal Tension Glaucoma, Ghana, Accra, Afric
Automatic Identification of Defects on Eggshell Through a Multispectral Vision System
The objective of this research was to develop an off-line artificial vision system to automatically detect defective eggshells, i.e., dirty or cracked eggshells, by employing multispectral images with the final purpose to adapt the system to an on-line grading machine. In particular, this work was focused to study the feasibility of identifying organic stains on brown eggshells (dirty eggshell), caused by blood, feathers, feces, etc., from natural stains, caused by deposits of pigments on the outer layer of clean eggshells. During the analysis a total of 384 eggs were evaluated (clean: 148, dirty: 236). Dirty samples were evaluated visually in order to classify them according to the kind of defect (blood, feathers, and white, clear or dark feces), and clean eggshells were classified on the basis of the colour of the natural stains (clear or dark). For each sample digital images were acquired by employing a Charged Coupled Device (CCD) camera endowed with 15 monochromatic filters (440-940 nm). A Matlab® function was developed in order to automate the process and analyze images, with the aim to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group on the basis of geometric characteristics of the stains (area in pixel). The proposed classification algorithm was able to correctly classify near 98% of the samples with a very low processing time (0.05s). The robustness of the proposed classification was observed applying an external validation to a second set of samples (n = 178), obtaining similar percentage of correctly classified samples (97%)
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.
Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.LB is supported by an EMBO Postdoctoral fellowship (EMBO ALTF 794-2014). CH is supported by a Cambridge Stem Cell Institute Seed Fund award and the Herchel Smith Fund. BK is supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society. MH is a Wellcome Trust Sir Henry Dale Fellow and is jointly funded by the Wellcome Trust and the Royal Society (104151/Z/14/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.097
- …
