123 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Elimination of Active Trachoma after Two Topical Mass Treatments with Azithromycin 1.5% Eye Drops
Trachoma is the leading cause of infectious blindness worldwide, accounting for 1.3 million cases of blindness. Although it has disappeared in many regions of the world, trachoma is still endemic in Africa, Eastern Mediterranean, Latin America, Asia, and Australia. The WHO has currently set a target of 2020 for controlling trachoma to a low enough level that resulting blindness will not be a major public health concern. Topical tetracycline was for a long time the recommended treatment for active trachoma, but compliance to the regimen is extremely poor. Azithromycin has properties that make it an ideal treatment for Chlamydia trachomatis: high efficacy, intracellular accumulation, and a long tissue half-life. There is now a new mass treatment of trachoma by azithromycin 1.5% eye drops which is as effective as the oral route. In the test health district of Kolofata, Cameroon, the prevalence of trachoma among children dramatically decreased from 31% to less than 5% after 2 treatments. A third treatment was performed in January 2010. An epidemiological surveillance is implemented to see if this removal will be permanent. It also avoids misuse of oral azithromycin and the eye drops are directly treating the site of the infection
On the amyloid datasets used for training PAFIG how (not) to extend the experimental dataset of hexapeptides
Machine Learning for Health: Algorithm Auditing & Quality Control
Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing
Diagnostic Accuracy of a Prototype Point-of-Care Test for Ocular Chlamydia trachomatis under Field Conditions in The Gambia and Senegal
Trachoma, caused by infection of the eye with the bacterium Chlamydia trachomatis, is the leading infectious cause of blindness and is associated with poverty. Antibiotic treatment of all community members is one of the recommended control strategies for trachoma. However, in places where the prevalence of clinical signs is low, C. trachomatis eye infection is often absent. Laboratory testing for C. trachomatis infection by polymerase chain reaction (PCR) is highly sensitive but expensive and requires well-trained staff. A simple point-of-care (POC) test that can be used in trachoma-affected communities could help trachoma control efforts. We evaluated a POC test for C. trachomatis eye infection. Children under 10 years of age were screened for clinical signs of trachoma and C. trachomatis eye infection. The POC test result was compared with laboratory PCR test results. The POC test detected just over half of PCR test positives correctly. However, the POC test tended to give false-positive results in hot and dry conditions, which is the typical environment of trachoma. The POC test requires high specificity since it would be used to make treatment decisions at the community level. Therefore, its present format requires improvement before it can be utilized in trachoma control
An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins
We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins
The History, Relevance, and Applications of the Periodic System in Geochemistry
Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes
Evolution of reproductive development in the volvocine algae
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed
Measurement of the nu(e) and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of He-3 proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active B-8 solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54(-0.31)(+0.33)(stat.)(-0.34)(+0.36)(syst.) x 10(6) cm(-2) s(-1), consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees. DOI: 10.1103/PhysRevC.87.01550
Did the loss of phytoplanktivorous fish contribute to algal blooms in the Mwanza Gulf of Lake Victoria?
- …
