219 research outputs found
Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme
We discuss the numerical solution of nonlinear parabolic partial differential
equations, exhibiting finite speed of propagation, via a strongly implicit
finite-difference scheme with formal truncation error . Our application of interest is the spreading of
viscous gravity currents in the study of which these type of differential
equations arise. Viscous gravity currents are low Reynolds number (viscous
forces dominate inertial forces) flow phenomena in which a dense, viscous fluid
displaces a lighter (usually immiscible) fluid. The fluids may be confined by
the sidewalls of a channel or propagate in an unconfined two-dimensional (or
axisymmetric three-dimensional) geometry. Under the lubrication approximation,
the mathematical description of the spreading of these fluids reduces to
solving the so-called thin-film equation for the current's shape . To
solve such nonlinear parabolic equations we propose a finite-difference scheme
based on the Crank--Nicolson idea. We implement the scheme for problems
involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or
spherically-symmetric three-dimensional currents) on an equispaced but
staggered grid. We benchmark the scheme against analytical solutions and
highlight its strong numerical stability by specifically considering the
spreading of non-Newtonian power-law fluids in a variable-width confined
channel-like geometry (a "Hele-Shaw cell") subject to a given mass
conservation/balance constraint. We show that this constraint can be
implemented by re-expressing it as nonlinear flux boundary conditions on the
domain's endpoints. Then, we show numerically that the scheme achieves its full
second-order accuracy in space and time. We also highlight through numerical
simulations how the proposed scheme accurately respects the mass
conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements
and corrections; to appear as a contribution in "Applied Wave Mathematics II
Differential game theory for versatile physical human-robot interaction
The last decades have seen a surge of robots working in contact with humans. However, until now these contact robots have made little use of the opportunities offered by physical interaction and lack a systematic methodology to produce versatile behaviours. Here, we develop an interactive robot controller able to understand the control strategy of the human user and react optimally to their movements. We demonstrate that combining an observer with a differential game theory controller can induce a stable interaction between the two partners, precisely identify each other’s control law, and allow them to successfully perform the task with minimum effort. Simulations and experiments with human subjects demonstrate these properties and illustrate how this controller can induce different representative interaction strategies
Co-ordinated Gene Expression in the Liver and Spleen during Schistosoma japonicum Infection Regulates Cell Migration
Determining the molecular events induced in the spleen during schistosome infection is an essential step in better understanding the immunopathogenesis of schistosomiasis and the mechanisms by which schistosomes modulate the host immune response. The present study defines the transcriptional and cellular events occurring in the murine spleen during the progression of Schistosoma japonicum infection. Additionally, we compared and contrasted these results with those we have previously reported for the liver. Microarray analysis combined with flow cytometry and histochemistry demonstrated that transcriptional changes occurring in the spleen were closely related to changes in cellular composition. Additionally, the presence of alternatively activated macrophages, as indicated by up-regulation of Chi3l3 and Chi3l4 and expansion of F4/80+ macrophages, together with enhanced expression of the immunoregulatory genes ANXA1 and CAMP suggests the spleen may be an important site for the control of S. japonicum-induced immune responses. The most striking difference between the transcriptional profiles of the infected liver and spleen was the contrasting expression of chemokines and cell adhesion molecules. Lymphocyte chemokines, including the homeostatic chemokines CXCL13, CCL19 and CCL21, were significantly down-regulated in the spleen but up-regulated in the liver. Eosinophil (CCL11, CCL24), neutrophil (CXCL1) and monocyte (CXCL14, CCL12) chemokines and the cell adhesion molecules VCAM1, NCAM1, PECAM1 were up-regulated in the liver but unchanged in the spleen. Chemokines up-regulated in both organs were expressed at significantly higher levels in the liver. Co-ordinated expression of these genes probably contributes to the development of a chemotactic signalling gradient that promotes recruitment of effector cells to the liver, thereby facilitating the development of hepatic granulomas and fibrosis. Together these data provide, for the first time, a comprehensive overview of the molecular events occurring in the spleen during schistosomiasis and will substantially further our understanding of the local and systemic mechanisms driving the immunopathogenesis of this disease
Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis
The Intermediate Filament Network in Cultured Human Keratinocytes Is Remarkably Extensible and Resilient
The prevailing model of the mechanical function of intermediate filaments in cells assumes that these 10 nm diameter filaments make up networks that behave as entropic gels, with individual intermediate filaments never experiencing direct loading in tension. However, recent work has shown that single intermediate filaments and bundles are remarkably extensible and elastic in vitro, and therefore well-suited to bearing tensional loads. Here we tested the hypothesis that the intermediate filament network in keratinocytes is extensible and elastic as predicted by the available in vitro data. To do this, we monitored the morphology of fluorescently-tagged intermediate filament networks in cultured human keratinocytes as they were subjected to uniaxial cell strains as high as 133%. We found that keratinocytes not only survived these high strains, but their intermediate filament networks sustained only minor damage at cell strains as high as 100%. Electron microscopy of stretched cells suggests that intermediate filaments are straightened at high cell strains, and therefore likely to be loaded in tension. Furthermore, the buckling behavior of intermediate filament bundles in cells after stretching is consistent with the emerging view that intermediate filaments are far less stiff than the two other major cytoskeletal components F-actin and microtubules. These insights into the mechanical behavior of keratinocytes and the cytokeratin network provide important baseline information for current attempts to understand the biophysical basis of genetic diseases caused by mutations in intermediate filament genes
Temporal Expression of Chemokines Dictates the Hepatic Inflammatory Infiltrate in a Murine Model of Schistosomiasis
Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature
An appraisal of rehabilitation regimes used for improving functional outcome after total hip replacement surgery
This study aimed to systematically review the literature with regards to studies of rehabilitation programmes that have tried to improve function after total hip replacement (THR) surgery. 15 randomised controlled trials were identified of which 11 were centre-based, 2 were home based and 2 were trials comparing home and centre based interventions. The use of a progressive resistance training (PRT) programme led to significant improvement in muscle strength and function if the intervention was carried out early (< 1 month following surgery) in a centre (6/11 centre-based studies used PRT), or late (> 1 month following surgery) in a home based setting (2/2 home based studies used PRT). In direct comparison, there was no difference in functional measures between home and centre based programmes (2 studies), with PRT not included in the regimes prescribed. A limitation of the majority of these intervention studies was the short period of follow up. Centre based program delivery is expensive as high costs are associated with supervision, facility provision, and transport of patients. Early interventions are important to counteract the deficit in muscle strength in the affected limb, as well as persistent atrophy that exists around the affected hip at 2 years post-operatively. Studies of early home-based regimes featuring PRT with long term follow up are needed to address the problems currently associated with rehabilitation following THR
Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design
<p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p
Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-γ, IL-4, IL-5 and IL-10 with age
<p>Abstract</p> <p>Background</p> <p>The rate of development of parasite-specific immune responses can be studied by following their age profiles in exposed and infected hosts. This study determined the cytokine-age profiles of Zimbabweans resident in a <it>Schistosoma haematobium </it>endemic area and further investigated the relationship between the cytokine responses and infection intensity.</p> <p>Methods</p> <p>Schistosome adult worm antigen-specific IFN-γ, IL-4, IL-5 and IL-10 cytokine responses elicited from whole blood cultures were studied in 190 Zimbabweans exposed to <it>S. haematobium </it>infection (aged 6 to 40 years old). The cytokines were measured using capture ELISAs and the data thus obtained together with <it>S. haematobium </it>egg count data from urine assays were analysed using a combination of parametric and nonparametric statistical approaches.</p> <p>Results</p> <p>Age profiles of schistosome infection in the study population showed that infection rose to peak in childhood (11–12 years) followed by a sharp decline in infection intensity while prevalence fell more gradually. Mean infection intensity was 37 eggs/10 ml urine (SE 6.19 eggs/10 ml urine) while infection prevalence was 54.7%. Measurements of parasite-specific cytokine responses showed that IL-4, IL-5 and IL-10 but not IFN-γ followed distinct age-profiles. Parasite-specific IL-10 production developed early, peaking in the youngest age group and declining thereafter; while IL-4 and IL-5 responses were slower to develop with a later peak. High IL-10 producers were likely to be egg positive with IL-10 production increasing with increasing infection intensity. Furthermore people producing high levels of IL-10 produced little or no IL-5, suggesting that IL-10 may be involved in the regulation of IL-5 levels. IL-4 and IFN-γ did not show a significant relationship with infection status or intensity and were positively associated with each other.</p> <p>Conclusion</p> <p>Taken together, these results show that the IL-10 responses develop early compared to the IL-5 response and may be down-modulating immunopathological responses that occur during the early phase of infection. The results further support current suggestions that the Th1/Th2 dichotomy does not sufficiently explain susceptibility or resistance to schistosome infection.</p
- …
