21 research outputs found

    So Different, yet So Similar: Meta-Analysis and Policy Modeling of Willingness to Participate in Clinical Trials among Brazilians and Indians

    Get PDF
    BACKGROUND: With the global expansion of clinical trials and the expectations of the rise of the emerging economies known as BRICs (Brazil, Russia, India and China), the understanding of factors that affect the willingness to participate in clinical trials of patients from those countries assumes a central role in the future of health research. METHODS: We conducted a systematic review and meta-analysis (SRMA) of willingness to participate in clinical trials among Brazilian patients and then we compared it with Indian patients (with results of another SRMA previously conducted by our group) through a system dynamics model. RESULTS: Five studies were included in the SRMA of Brazilian patients. Our main findings are 1) the major motivation for Brazilian patients to participate in clinical trials is altruism, 2) monetary reimbursement is the least important factor motivating Brazilian patients, 3) the major barrier for Brazilian patients to not participate in clinical trials is the fear of side effects, and 4) Brazilian patients are more likely willing to participate in clinical trials than Indians. CONCLUSION: Our study provides important insights for investigators and sponsors for planning trials in Brazil (and India) in the future. Ignoring these results may lead to unnecessary fund/time spending. More studies are needed to validate our results and for better understanding of this poorly studied theme

    Traffic and Related Self-Driven Many-Particle Systems

    Full text link
    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize in lanes, while similar systems are ``freezing by heating''? Why do self-organizing systems tend to reach an optimal state? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems. This review article on traffic introduces (i) empirically data, facts, and observations, (ii) the main approaches to pedestrian, highway, and city traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts like a general modelling framework for self-driven many-particle systems, including spin systems. Subjects such as the optimization of traffic flows and relations to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are discussed as well.Comment: A shortened version of this article will appear in Reviews of Modern Physics, an extended one as a book. The 63 figures were omitted because of storage capacity. For related work see http://www.helbing.org

    Interval censored survival data: a review of recent progress

    No full text
    We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the nonparametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accelerated failure time semiparametric regression models. Particular emphasis is given to calculation of the Fisher information for the regression parameters. We also discuss computation of the regression parameter estimators via pro le likelihood or maximization of the semiparametric likelihood, distributional results for the maximum likelihood estimators, and estimation of (asymptotic) variances. Some further problems and open questions are also reviewed. 1 0. Outline
    corecore