21 research outputs found
So Different, yet So Similar: Meta-Analysis and Policy Modeling of Willingness to Participate in Clinical Trials among Brazilians and Indians
BACKGROUND: With the global expansion of clinical trials and the expectations of the rise of the emerging economies known as BRICs (Brazil, Russia, India and China), the understanding of factors that affect the willingness to participate in clinical trials of patients from those countries assumes a central role in the future of health research. METHODS: We conducted a systematic review and meta-analysis (SRMA) of willingness to participate in clinical trials among Brazilian patients and then we compared it with Indian patients (with results of another SRMA previously conducted by our group) through a system dynamics model. RESULTS: Five studies were included in the SRMA of Brazilian patients. Our main findings are 1) the major motivation for Brazilian patients to participate in clinical trials is altruism, 2) monetary reimbursement is the least important factor motivating Brazilian patients, 3) the major barrier for Brazilian patients to not participate in clinical trials is the fear of side effects, and 4) Brazilian patients are more likely willing to participate in clinical trials than Indians. CONCLUSION: Our study provides important insights for investigators and sponsors for planning trials in Brazil (and India) in the future. Ignoring these results may lead to unnecessary fund/time spending. More studies are needed to validate our results and for better understanding of this poorly studied theme
Traffic and Related Self-Driven Many-Particle Systems
Since the subject of traffic dynamics has captured the interest of
physicists, many astonishing effects have been revealed and explained. Some of
the questions now understood are the following: Why are vehicles sometimes
stopped by so-called ``phantom traffic jams'', although they all like to drive
fast? What are the mechanisms behind stop-and-go traffic? Why are there several
different kinds of congestion, and how are they related? Why do most traffic
jams occur considerably before the road capacity is reached? Can a temporary
reduction of the traffic volume cause a lasting traffic jam? Under which
conditions can speed limits speed up traffic? Why do pedestrians moving in
opposite directions normally organize in lanes, while similar systems are
``freezing by heating''? Why do self-organizing systems tend to reach an
optimal state? Why do panicking pedestrians produce dangerous deadlocks? All
these questions have been answered by applying and extending methods from
statistical physics and non-linear dynamics to self-driven many-particle
systems. This review article on traffic introduces (i) empirically data, facts,
and observations, (ii) the main approaches to pedestrian, highway, and city
traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and
macroscopic (fluid-dynamic) models. Attention is also paid to the formulation
of a micro-macro link, to aspects of universality, and to other unifying
concepts like a general modelling framework for self-driven many-particle
systems, including spin systems. Subjects such as the optimization of traffic
flows and relations to biological or socio-economic systems such as bacterial
colonies, flocks of birds, panics, and stock market dynamics are discussed as
well.Comment: A shortened version of this article will appear in Reviews of Modern
Physics, an extended one as a book. The 63 figures were omitted because of
storage capacity. For related work see http://www.helbing.org
POLLUTION MOBILITY, PRODUCTIVITY DISPARITY, AND THE SPATIAL DISTRIBUTION OF POLLUTING AND NONPOLLUTING FIRMS
For a critical appraisal of artificial intelligence in healthcare: The problem of bias in mHealth
International audienc
For a critical appraisal of artificial intelligence in healthcare: The problem of bias in mHealth
Interval censored survival data: a review of recent progress
We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the nonparametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accelerated failure time semiparametric regression models. Particular emphasis is given to calculation of the Fisher information for the regression parameters. We also discuss computation of the regression parameter estimators via pro le likelihood or maximization of the semiparametric likelihood, distributional results for the maximum likelihood estimators, and estimation of (asymptotic) variances. Some further problems and open questions are also reviewed. 1 0. Outline
