1,108 research outputs found

    Gut microbiome-host interactions in health and disease

    Get PDF

    Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs.

    Get PDF
    Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection

    Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies

    Get PDF
    Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities. Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation. Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels. Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport, chronic lung infections, inflammation and eventual respiratory failure. With the exception of the small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect. The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy formulation through preclinical and clinical development. OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of 1 year in patients with CF. DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1). Allocation was blinded by masking nebuliser chambers. SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm, version 4.6 database. PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1) between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group (≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene therapy (78 randomised). INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at 28 (±5)-day intervals over 1 year. MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1 over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and lower airway potential difference. RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI) 0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4% (95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI. The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No difference in treatment-attributable AEs was seen between the placebo and active groups. CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with an improvement in lung function, other clinically relevant parameters and bronchial CFTR function, compared with placebo. LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by detectable improvement in patients’ quality of life. FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency, the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of repeated administration. TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867

    Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure

    Get PDF
    We used coarse-grained molecular dynamics simulations to characterize the global and local mechanical properties of a DNA origami triangle nanostructure. The structure presents two metastable conformations separated by a free energy barrier that is lowered upon omission of four specific DNA staples (defect). In contrast, only one stable conformation is present upon removing eight staples. The metastability is explained in terms of the intrinsic conformations of the three trapezoidal substructures. We computationally modeled the local accessibility to endonucleases, to predict the reactivity of twenty sites, and found good agreement with the experimental data. We showed that global fluctuations affect local reactivity: the removal of the DNA staples increased the computed accessibility to a restriction enzyme, at sites as distant as 40 nm, due to an increase in global fluctuation. These results raise the intriguing possibility of the rational engineering of allosterically modulated DNA origami

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    High-resolution patterned cellular constructs by droplet-based 3D printing.

    Get PDF
    Bioprinting is an emerging technique for the fabrication of living tissues that allows cells to be arranged in predetermined three-dimensional (3D) architectures. However, to date, there are limited examples of bioprinted constructs containing multiple cell types patterned at high-resolution. Here we present a low-cost process that employs 3D printing of aqueous droplets containing mammalian cells to produce robust, patterned constructs in oil, which were reproducibly transferred to culture medium. Human embryonic kidney (HEK) cells and ovine mesenchymal stem cells (oMSCs) were printed at tissue-relevant densities (107 cells mL-1) and a high droplet resolution of 1 nL. High-resolution 3D geometries were printed with features of ≤200 μm; these included an arborised cell junction, a diagonal-plane junction and an osteochondral interface. The printed cells showed high viability (90% on average) and HEK cells within the printed structures were shown to proliferate under culture conditions. Significantly, a five-week tissue engineering study demonstrated that printed oMSCs could be differentiated down the chondrogenic lineage to generate cartilage-like structures containing type II collagen

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
    corecore