1,977 research outputs found
FLICK: Developing and Running Application-Specific Network Services
Data centre networks are increasingly programmable, with application-specific network services proliferating, from custom load-balancers to middleboxes providing caching and aggregation. Developers must currently implement these services using traditional low-level APIs, which neither support natural operations on application data nor provide efficient performance isolation. We describe FLICK, a framework for the programming and execution of application-specific network services on multi-core CPUs. Developers write network services in the FLICK language, which offers high-level processing constructs and application-relevant data types. FLICK programs are translated automatically to efficient, parallel task graphs, implemented in C++ on top of a user-space TCP stack. Task graphs have bounded resource usage at runtime, which means that the graphs of multiple services can execute concurrently without interference using cooperative scheduling. We evaluate FLICK with several services (an HTTP load-balancer, a Memcached router and a Hadoop data aggregator), showing that it achieves good performance while reducing development effort
An Extensively Humanized Mouse Model to Predict Pathways of Drug Disposition and Drug/Drug Interactions, and to Facilitate Design of Clinical Trials
Species differences in drug metabolism and disposition can confound the extrapolation of in vivo pharmacokinetic data to man, and also profoundly compromise drug efficacy studies due to differences in pharmacokinetics, in metabolites produced (which are often pharmacologically active) and in differential activation of the transcription factors CAR and PXR which regulate the expression of enzymes such as P450s and drug transporters. These differences have gained additional importance as a consequence of the use of genetically modified mouse models for drug efficacy testing and also patient-derived xenografts to predict individual patient responses to anti-cancer drugs. A number of humanised mouse models for cytochrome P450s, CAR and PXR have been reported. However, the utility of these models has been compromised as a consequence of the redundancy of P450 reactions across gene families where the remaining murine P450s can metabolise the compounds being tested. To remove this confounding factor and create a mouse model which more closely reflects human pathways of drug disposition we have substituted 33 murine P450s from the major gene families involved in drug disposition, together with Car and Pxr, for human CAR, PXR, CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP3A4 and CYP3A7. We have also created a mouse line where 34 P450s have been deleted from the mouse genome. We demonstrate using model compounds and anti-cancer drugs how these mouse lines can be applied to predict drug-drug interactions in patients and discuss their potential application in the more informed design of clinical trials and the personalised treatment of cancer
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Aspects of holography for theories with hyperscaling violation
We analyze various aspects of the recently proposed holographic theories with
general dynamical critical exponent z and hyperscaling violation exponent
. We first find the basic constraints on from the gravity
side, and compute the stress-energy tensor expectation values and scalar
two-point functions. Massive correlators exhibit a nontrivial exponential
behavior at long distances, controlled by . At short distance, the
two-point functions become power-law, with a universal form for .
Next, the calculation of the holographic entanglement entropy reveals the
existence of novel phases which violate the area law. The entropy in these
phases has a behavior that interpolates between that of a Fermi surface and
that exhibited by systems with extensive entanglement entropy. Finally, we
describe microscopic embeddings of some metrics into full
string theory models -- these metrics characterize large regions of the
parameter space of Dp-brane metrics for . For instance, the theory of
N D2-branes in IIA supergravity has z=1 and over a wide range
of scales, at large .Comment: 35 pages; v2: new references added; v3: proper reference [14] added;
v4: minor clarification
A remarkable recurrent nova in M31: Discovery and optical/UV observations of the predicted 2014 eruption
The Andromeda Galaxy recurrent nova M31N 2008-12a had been caught in eruption eight times. The inter-eruption period of M31N 2008-12a is ~1 year, making it the most rapidly recurring system known, and a strong single-degenerate Type Ia Supernova progenitor candidate. Following the 2013 eruption, a campaign was initiated to detect the predicted 2014 eruption and to then perform high cadence optical photometric and spectroscopic monitoring using ground-based telescopes, along with rapid UV and X-ray follow-up with the Swift satellite. Here we report the results of a high cadence multicolour optical monitoring campaign, the spectroscopic evolution, and the UV photometry. We also discuss tantalising evidence of a potentially related, vastly-extended, nebulosity. The 2014 eruption was discovered, before optical maximum, on October 2, 2014. We find that the optical properties of M31N 2008-12a evolve faster than all Galactic recurrent novae known, and all its eruptions show remarkable similarity both photometrically and spectroscopically. Optical spectra were obtained as early as 0.26 days post maximum, and again confirm the nova nature of the eruption. A significant deceleration of the inferred ejecta expansion velocity is observed which may be caused by interaction of the ejecta with surrounding material, possibly a red giant wind. We find a low ejected mass and low ejection velocity, which are consistent with high mass-accretion rate, high mass white dwarf, and short recurrence time models of novae. We encourage additional observations, especially around the predicted time of the next eruption, towards the end of 2015
Re-Infection Outcomes following One- and Two-Stage Surgical Revision of Infected Hip Prosthesis:A Systematic Review and Meta-Analysis
The two-stage revision strategy has been claimed as being the "gold standard" for treating prosthetic joint infection. The one-stage revision strategy remains an attractive alternative option; however, its effectiveness in comparison to the two-stage strategy remains uncertain.To compare the effectiveness of one- and two-stage revision strategies in treating prosthetic hip infection, using re-infection as an outcome.Systematic review and meta-analysis.MEDLINE, EMBASE, Web of Science, Cochrane Library, manual search of bibliographies to March 2015, and email contact with investigators.Cohort studies (prospective or retrospective) conducted in generally unselected patients with prosthetic hip infection treated exclusively by one- or two-stage revision and with re-infection outcomes reported within two years of revision. No clinical trials were identified.Data were extracted by two independent investigators and a consensus was reached with involvement of a third. Rates of re-infection from 38 one-stage studies (2,536 participants) and 60 two-stage studies (3,288 participants) were aggregated using random-effect models after arcsine transformation, and were grouped by study and population level characteristics.In one-stage studies, the rate (95% confidence intervals) of re-infection was 8.2% (6.0-10.8). The corresponding re-infection rate after two-stage revision was 7.9% (6.2-9.7). Re-infection rates remained generally similar when grouped by several study and population level characteristics. There was no strong evidence of publication bias among contributing studies.Evidence from aggregate published data suggest similar re-infection rates after one- or two-stage revision among unselected patients. More detailed analyses under a broader range of circumstances and exploration of other sources of heterogeneity will require collaborative pooling of individual participant data.PROSPERO 2015: CRD42015016559
Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach
Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur
- …
