22 research outputs found
Psychological rumination and recovery from work in Intensive Care Professionals : associations with stress, burnout, depression, and health
Background The work demands of critical care can be a major cause of stress in intensive care unit (ICU) professionals and lead to poor health outcomes. In the process of recovery from work, psychological rumination is considered to be an important mediating variable in the relationship between work demands and health outcomes. This study aimed to extend our knowledge of the process by which ICU stressors and differing rumination styles are associated with burnout, depression and risk of psychiatric morbidity among ICU professionals. Methods Ninety-six healthcare professionals (58 doctors and 38 nurses) who work in ICUs in the UK completed a questionnaire on ICU-related stressors, burnout, work-related rumination, depression and risk of psychiatric morbidity. Results Significant associations between ICU stressors, affective rumination, burnout, depression and risk of psychiatric morbidity were found. Longer working hours were also related to increased ICU stressors. Affective rumination (but not problem-solving pondering or distraction detachment) mediated the relationship between ICU stressors, burnout, depression and risk of psychiatric morbidity, such that increased ICU stressors, and greater affective rumination, were associated with greater burnout, depression and risk of psychiatric morbidity. No moderating effects were observed. Conclusions Longer working hours were associated with increased ICU stressors, and increased ICU stressors conferred greater burnout, depression and risk of psychiatric morbidity via increased affective rumination. The importance of screening healthcare practitioners within intensive care for depression, burnout and psychiatric morbidity has been highlighted. Future research should evaluate psychological interventions which target rumination style and could be made available to those at highest risk. The efficacy and cost effectiveness of delivering these interventions should also be considered
Characterizing livestock markets, primary diseases and key management practices along the livestock supply chain in Cameroon
Live animal markets are common hotspots for the dispersal of multiple infectious diseases in various production systems globally. In Cameroon livestock trade occurs predominantly via a system of livestock markets. Improving the understanding of the risks associated with livestock trade systems and markets is, therefore, key to design targeted and evidence-based interventions. In the current study, official transaction records for a 12-month period were collected from 62 livestock markets across Central and Southern Cameroon, in combination with a questionnaire-based survey with the livestock markets stakeholders. The available information collected at these markets was used to characterize their structural and functional organization. Based on trade volume, cattle price and the intensity of stakeholder attendance, four main classes of livestock markets were identified. Despite an evident hierarchical structure of the system, a relatively limited pool of infectious diseases was consistently reported as predominant across market classes, highlighting homogeneous disease risks along the livestock supply chain. Conversely, the variable livestock management practices reported (e.g., traded species, husbandry practices, and transhumance habits) highlighted diverse potential risks for disease dissemination among market classes. Making use of readily available commercial information at livestock markets, this study describes a rapid approach for market characterization and classification. Simultaneously, this study identifies primary diseases and management practices at risk and provides the opportunity to inform evidence-based and strategic communication, surveillance and control approaches aiming at mitigating these risks for diseases dissemination through the livestock supply chain in Cameroon
Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution
BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour
Comments On The Proposed Conservation Of Ptychagnostus Jaekel, 1909 And Glyptagnostus Whitehouse, 1936 (Trilobita)
Volume: 49Start Page: 150End Page: 15
