38 research outputs found
Report on Crassispirinae Morrison, 1966 (Mollusca: Neogastropoda: Turridae) from the China Seas
The Terebridae and teretoxins: Combining phylogeny and anatomy for concerted discovery of bioactive compounds
The Conoidea superfamily, comprised of cone snails, terebrids, and turrids, is an exceptionally promising group for the discovery of natural peptide toxins. The potential of conoidean toxins has been realized with the distribution of the first Conus (cone snail) drug, Prialt (ziconotide), an analgesic used to alleviate chronic pain in HIV and cancer patients. Cone snail toxins (conotoxins) are highly variable, a consequence of a high mutation rate associated to duplication events and positive selection. As Conus and terebrids diverged in the early Paleocene, the toxins from terebrids (teretoxins) may demonstrate highly divergent and unique functionalities. Recent analyses of the Terebridae, a largely distributed family with more than 300 described species, indicate they have evolutionary and pharmacological potential. Based on a three gene (COI, 12S and 16S) molecular phylogeny, including ~50 species from the West-Pacific, five main terebrid lineages were discriminated: two of these lineages independently lost their venom apparatus, and one venomous lineage was previously unknown. Knowing the phylogenetic relationships within the Terebridae aids in effectively targeting divergent lineages with novel peptide toxins. Preliminary results indicate that teretoxins are similar in structure and composition to conotoxins, suggesting teretoxins are an attractive line of research to discover and develop new therapeutics that target ion channels and receptors. Using conotoxins as a guideline, and innovative natural products discovery strategies, such as the Concerted Discovery Strategy, the potential of the Terebridae and their toxins are explored as a pioneering pharmacological resource
Unexpected Fine-Scale Population Structure in a Broadcast-Spawning Antarctic Marine Mollusc
Several recent empirical studies have challenged the prevailing dogma that broadcast-spawning species exhibit little or no population genetic structure by documenting genetic discontinuities associated with large-scale oceanographic features. However, relatively few studies have explored patterns of genetic differentiation over fine spatial scales. Consequently, we used a hierarchical sampling design to investigate the basis of a weak but significant genetic difference previously reported between Antarctic limpets (Nacella concinna) sampled from Adelaide and Galindez Islands near the base of the Antarctic Peninsula. Three sites within Ryder Bay, Adelaide Island (Rothera Point, Leonie and Anchorage Islands) were each sub-sampled three times, yielding a total of 405 samples that were genotyped at 155 informative Amplified Fragment Length Polymorphisms (AFLPs). Contrary to our initial expectations, limpets from Anchorage Island were found to be subtly, but significantly distinct from those sampled from the other sites. This suggests that local processes may play an important role in generating fine-scale population structure even in species with excellent dispersal capabilities, and highlights the importance of sampling at multiple spatial scales in population genetic surveys
Report on the Raphitomidae Bellardi, 1875 (Mollusca: Gastropoda: Conoidea) from the China Seas
Li, Baoquan, Li, Xinzheng (2014): Report on the Raphitomidae Bellardi, 1875 (Mollusca: Gastropoda: Conoidea) from the China Seas. Journal of Natural History 48 (17): 999-1025, DOI: 10.1080/00222933.2013.86193
Antarctic marine molluscs do have an HSP70 heat shock response
The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past
A revision of the New Zealand Placostylus
We have analysed mitochondrial DNA and shell morphometric data from all species and subspecies of Placostylus land snails in New Zealand. These subspecies were originally described on the basis of shell morphology. The genetic data show that each of the three species P. bollonsi, P. hongii and P. ambagiosus are well differentiated and monphyletic for mitochondrial DNA, consistent with their species status. Variation among subspecies within each of the three species was minimal with sharing of haplotypes among subspecies. Morphometric analysis of shell shape characters shows large amounts of environmental plasticity. On the basis of these data we have synonymised all subspecies within each of the three Placostylus species. Consequently, the New Zealand fauna now consists of three Placostylus species, P. ambagiosus, P. hongii and P. bollonsi, and no subspecies. We recommend conservation of multiple populations within each species to ensure preservation of genetic variation
