22 research outputs found
Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates
Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide.
Ingestion of vector species can lead to paralytic shellfish poisoning, a severe
human illness that may lead to paralysis and death. In freshwaters, the toxin is
produced by prokaryotic cyanobacteria; in marine waters, it is associated with
eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is
not produced by dinoflagellates themselves, but by co-cultured bacteria. Here,
we show that genes required for saxitoxin synthesis are encoded in the nuclear
genomes of dinoflagellates. We sequenced >1.2×106 mRNA
transcripts from the two saxitoxin-producing dinoflagellate strains
Alexandrium fundyense CCMP1719 and A.
minutum CCMP113 using high-throughput sequencing technology. In
addition, we used in silico transcriptome analyses, RACE, qPCR
and conventional PCR coupled with Sanger sequencing. These approaches
successfully identified genes required for saxitoxin-synthesis in the two
transcriptomes. We focused on sxtA, the unique starting gene of
saxitoxin synthesis, and show that the dinoflagellate transcripts of
sxtA have the same domain structure as the cyanobacterial
sxtA genes. But, in contrast to the bacterial homologs, the
dinoflagellate transcripts are monocistronic, have a higher GC content, occur in
multiple copies, contain typical dinoflagellate spliced-leader sequences and
eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and
non-producing dinoflagellate strains from six different genera for the presence
of genomic sxtA homologs. Our results show very good agreement
between the presence of sxtA and saxitoxin-synthesis, except in
three strains of A. tamarense, for which we amplified
sxtA, but did not detect the toxin. Our work opens for
possibilities to develop molecular tools to detect saxitoxin-producing
dinoflagellates in the environment
Development and validation of a risk score (CHANGE) for cognitive impairment after ischemic stroke
Post-stroke cognitive impairment (PSCI) warrants early detection and management. We sought to develop a risk score for screening patients at bedside for risk of delayed PSCI. Ischemic stroke survivors with PSCI and no cognitive impairments (NCI) 3-6 months post-stroke were studied to identify candidate variables predictive of PSCI. These variables were used to develop a risk score using regression models. The score, and the best identified clinical cutoff point, underwent development, stability testing, and internal and external validation in three independent cohorts from Singapore and Hong Kong. Across 1,088 subjects, the risk score, dubbed CHANGE, had areas under the receiver operating characteristics curve (AUROC) from 0.74 to 0.82 in detecting significant risk for PSCI, and had predicted values following actual prevalence. In validation data 3-6 and 12-18 months post-stroke, subjects with low, medium, and high scores had PSCI prevalence of 7-23%, 25-58%, and 67-82%. CHANGE was effective in screening ischemic stroke survivors for significant risk of developing PSCI up to 18 months post-stroke. CHANGE used readily available and reliable clinical data, and may be useful in identifying at-risk patients for PSCI
Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers
Polybrominated diphenyl ethers (PBDEs) are common pollutants released from electronic waste (e-waste) dismantling and recycling activities. Our city-wide survey of agricultural soils in Qingyuan (40 sampling sites), where e-waste recycling has been active, observed exceedance of PBDEs above background levels (average of 251.9 ng g − 1 , 87 times the regional baseline concentration) together with elevated levels of metals/metalloids at the contamination hotspots, such as As (180.4 mg kg − 1 ), Cu (100.7 mg kg − 1 ), Zn (93.4 mg kg − 1 ), Pb (37.8 mg kg − 1 ), Cr (15.1 mg kg − 1 ), and Cd (0.3 mg kg − 1 ). Hence, a twenty-cycle batch sorption test on composite soil samples from the e-waste site was conducted to study the fate of BDE-28 (2,4,4′-tribromodiphenyl ether) and BDE-99 (2,2′,4,4′,5-pentabromodiphenyl ether) under the influence of co-existing trace elements (TEs) (Cu, Pb, Zn, and Cd, which exceeded Chinese Environmental Quality Standard for Soils), dissolved organic matter (extracted from local peat), and locally available commercial fertilizer. The results showed that the presence of TEs barely affected the sorption of BDEs, probably because the low concentration of BDEs in the environment resulted in nearly complete sorption onto the soil. In contrast, metals sorption onto soil was promoted by the presence of BDEs. The mobility of BDE-28 was higher than BDE-99 in water leaching tests, while the leaching concentration of BDE-99 was further reduced in simulated acid rain possibly due to protonation of π-accepting sites in soil organic matter. In the freshly spiked soil, BDEs of greater hydrophobicity and larger molecular size exhibited higher bioavailability (due to greater affinity to Tenax extraction), which was contrary to the field contaminated soil. Similarly, the co-occurrence of metals and fertilizer increased the bioavailability of newly sorbed BDE-99 more than BDE-28 in the soil. These results illustrate the need to holistically assess the fate and interactions of co-existing organic and inorganic pollutants in the agricultural soils
