15,139 research outputs found

    NP-complete Problems and Physical Reality

    Full text link
    Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and "anthropic computing." The section on soap bubbles even includes some "experimental" results. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics.Comment: 23 pages, minor correction

    Rational weak mixing in infinite measure spaces

    Full text link
    Rational weak mixing is a measure theoretic version of Krickeberg's strong ratio mixing property for infinite measure preserving transformations. It requires "{\tt density}" ratio convergence for every pair of measurable sets in a dense hereditary ring. Rational weak mixing implies weak rational ergodicity and (spectral) weak mixing. It is enjoyed for example by Markov shifts with Orey's strong ratio limit property. The power, subsequence version of the property is generic.Comment: Typos in the definitions of "rational weak mixing" and "weak rational ergodicity" (p.5) are correcte

    Quantum Certificate Complexity

    Get PDF
    Given a Boolean function f, we study two natural generalizations of the certificate complexity C(f): the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using Ambainis' adversary method, we exactly characterize QC(f) as the square root of RC(f). We then use this result to prove the new relation R0(f) = O(Q2(f)^2 Q0(f) log n) for total f, where R0, Q2, and Q0 are zero-error randomized, bounded-error quantum, and zero-error quantum query complexities respectively. Finally we give asymptotic gaps between the measures, including a total f for which C(f) is superquadratic in QC(f), and a symmetric partial f for which QC(f) = O(1) yet Q2(f) = Omega(n/log n).Comment: 9 page

    Is Quantum Mechanics An Island In Theoryspace?

    Get PDF
    This recreational paper investigates what happens if we change quantum mechanics in several ways. The main results are as follows. First, if we replace the 2-norm by some other p-norm, then there are no nontrivial norm-preserving linear maps. Second, if we relax the demand that norm be preserved, we end up with a theory that allows rapid solution of PP-complete problems (as well as superluminal signalling). And third, if we restrict amplitudes to be real, we run into a difficulty much simpler than the usual one based on parameter-counting of mixed states.Comment: 9 pages, minor correction

    A Linear-Optical Proof that the Permanent is #P-Hard

    Get PDF
    One of the crown jewels of complexity theory is Valiant's 1979 theorem that computing the permanent of an n*n matrix is #P-hard. Here we show that, by using the model of linear-optical quantum computing---and in particular, a universality theorem due to Knill, Laflamme, and Milburn---one can give a different and arguably more intuitive proof of this theorem.Comment: 12 pages, 2 figures, to appear in Proceedings of the Royal Society A. doi: 10.1098/rspa.2011.023

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde
    corecore