579 research outputs found

    A Hybrid N-Body Code Incorporating Algorithmic Regularization and Post-Newtonian Forces

    Full text link
    We describe a novel N-body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's 'algorithmic' chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a fourth-order integrator with forces computed on a GRAPE board. Performance tests confirm that the hybrid code achieves better energy conservation, in less elapsed time, than the standard scheme and that it reproduces the orbits of stars tightly bound to the black hole with high precision. The hybrid code is applied to two sample problems: the effect of finite-N gravitational fluctuations on the orbits of the S-stars; and inspiral of an intermediate-mass black hole into the galactic center.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Pre-mainsequence stellar evolution in N-body models

    Full text link
    We provide a set of analytic fits to the radii of pre-mainsequence stars in the mass range 0.1 < M/Msun < 8.0. We incorporate the formulae in N-body cluster models for evolution from the beginning of pre-main sequence. In models with 1,000 stars and high initial cluster densities, pre-mainsequence evolution causes roughly twice the number of collisions between stars than in similar models with evolution begun only from the zero-age main sequence. The collisions are often all part of a runaway sequence that creates one relatively massive star.Comment: 8 pages, 4 figures, accepted by PAS

    Direct N-body Modelling of Stellar Populations: Blue Stragglers in M67

    Get PDF
    We present a state-of-the-art N-body code which includes a detailed treatment of stellar and binary evolution as well as the cluster dynamics. This code is ideal for investigating all aspects relating to the evolution of star clusters and their stellar populations. It is applicable to open and globular clusters of any age. We use the N-body code to model the blue straggler population of the old open cluster M67. Preliminary calculations with our binary population synthesis code show that binary evolution alone cannot explain the observed numbers or properties of the blue stragglers. On the other hand, our N-body model of M67 generates the required number of blue stragglers and provides formation paths for all the various types found in M67. This demonstrates the effectiveness of the cluster environment in modifying the nature of the stars it contains and highlights the importance of combining dynamics with stellar evolution. We also perform a series of N = 10000 simulations in order to quantify the rate of escape of stars from a cluster subject to the Galactic tidal field.Comment: 26 pages, 18 figures, accepted for publication in MNRA

    Metagames:On the ontology of games outside of games

    Get PDF
    The term metagame has developed into a conflation of many concepts. This paper disentangles the uses of it through a review of related Game Studies literature. After the distinction of five metagame categories (added, material, social, strategy, rule), the ontology of rule metagames and its implications for future research is discussed

    A dynamical gravitational wave source in a dense cluster

    Full text link
    Making use of a new N-body model to describe the evolution of a moderate-size globular cluster we investigate the characteristics of the population of black holes within such a cluster. This model reaches core-collapse and achieves a peak central density typical of the dense globular clusters of the Milky Way. Within this high-density environment we see direct confirmation of the merging of two stellar remnant black-holes in a dynamically-formed binary, a gravitational wave source. We describe how the formation, evolution and ultimate ejection/destruction of binary systems containing black holes impacts the evolution of the cluster core. Also, through comparison with previous models of lower density, we show that the period distribution of black hole binaries formed through dynamical interactions in this high-density model favours the production of gravitational wave sources. We confirm that the number of black holes remaining in a star cluster at late times and the characteristics of the binary black hole population depend on the nature of the star cluster, critically on the number density of stars and by extension the relaxation timescale.Comment: 10 pages, 4 figures, submitted to PASA May 17 2016, resubmitted June 30 201

    On the origin of the distribution of binary-star periods

    Get PDF
    Pre-main sequence and main-sequence binary systems are observed to have periods, P, ranging from one day to 10^(10) days and eccentricities, e, ranging from 0 to 1. We pose the problem if stellar-dynamical interactions in very young and compact star clusters may broaden an initially narrow period distribution to the observed width. N-body computations of extremely compact clusters containing 100 and 1000 stars initially in equilibrium and in cold collapse are preformed. In all cases the assumed initial period distribution is uniform in the narrow range 4.5 < log10(P) < 5.5 (P in days) which straddles the maximum in the observed period distribution of late-type Galactic-field dwarf systems. None of the models lead to the necessary broadening of the period distribution, despite our adopted extreme conditions that favour binary--binary interactions. Stellar-dynamical interactions in embedded clusters thus cannot, under any circumstances, widen the period distribution sufficiently. The wide range of orbital periods of very young and old binary systems is therefore a result of cloud fragmentation and immediate subsequent magneto-hydrodynamical processes operating within the multiple proto-stellar system.Comment: 11 pages, 4 figures, ApJ, in pres

    What is the Temperature Dependence of the Casimir Effect?

    Full text link
    There has been recent criticism of our approach to the Casimir force between real metallic surfaces at finite temperature, saying it is in conflict with the third law of thermodynamics and in contradiction with experiment. We show that these claims are unwarranted, and that our approach has strong theoretical support, while the experimental situation is still unclear.Comment: 6 pages, REVTeX, final revision includes two new references and related discussio

    Escaping stars from young low-N clusters

    Full text link
    With the use of N-body calculations the amount and properties of escaping stars from low-N (N = 100 and 1000) young embedded star clusters prior to gas expulsion are studied over the first 5 Myr of their existence. Besides the number of stars also different initial radii and binary populations are examined as well as virialised and collapsing clusters. It is found that these clusters can loose substantial amounts (up to 20%) of stars within 5 Myr with considerable velocities up to more than 100 km/s. Even with their mean velocities between 2 and 8 km/s these stars will still be travelling between 2 and 30 pc during the 5 Myr. Therefore can large amounts of distributed stars in star-forming regions not necessarily be counted as evidence for the isolated formation of stars.Comment: 10 pages, 10 figures, accepted for publication by MNRA
    corecore