55 research outputs found
Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives
The kinetics of laccase-catalyzed transformation of the azo-dye Diamond Black PV 200 (CI Mordant Black 9) and various related synthesized derivatives were analyzed for dependence on pH and substrate structure. The reaction mixture of Diamond Black PV 200 was analyzed
by HPLC/MS_/MS and it was shown that upon laccase oxidation, reactive chinoid fragments of lower molecular weight were formed. These may further oligomerize as indicated by the appearance of a number of compounds
with increased molecular weight. The pH optimum for the decolorization was pH 5 for Diamond Black PV 200 which did not change significantly when the substitution pattern of its basic structure was varied. Biodegradability, however, was strongly dependent on the structure of the dyes
Specificities of a chemically modified laccase from trametes hirsuta on soluble and cellulose-bound substrates
Laccases could prevent fabrics and
garments from re-deposition of dyes during
washing and finishing processes by degrading the solubilized dye. However, laccase action must be restricted to solubilized dye molecules thereby
avoiding decolorization of fabrics. Chemical
modification of enzymes can provide a powerful tool to change the adsorption behaviour of enzymes on water insoluble polymers. Polyethylene glycol (PEG) was covalently attached onto a laccase from Trametes hirsuta. Different molecular
weights of the synthetic polymer were tested
in terms of adsorption behaviour and retained
laccase activity. Covalent attachment of PEG
onto the laccase resulted in enhanced enzyme
stability while with increasing molecular weight of attached PEG the substrate affinity for the laccase conjugate decreased. The activity of the modified laccases on fibre bound dye was drastically reduced decreasing the adsorption of the enzyme on various fabrics. Compared to the 5 kDa PEG laccase conjugate (K/S value 47.60
Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp. from Colombia
High resolution fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin
Lignin and lignin components of woody biomass have been identified as an attractive alternative to fossil fuels. However, the complex composition of this plant polymer is one of the drawbacks that limits its exploitation. Biocatalysis of lignin to produce platform chemicals has been receiving great attention as it presents a sustainable approach for lignin valorisation. Aligned with this area of research, in the present study we have applied ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify the preferred lignin substrates of a ligninolytic enzyme, a laccase produced by the terrestrial fungus Trametes versicolor. A commercial lignin was incubated with the laccase and acetosyringone (a laccase mediator) for up to 168 h and direct infusion electrospray FT-ICR MS enabled the identification of thousands of molecular species present in the complex lignin sample at different incubation time points. Significant changes in the chemical composition of lignin were detected upon laccase treatment, which resulted in a decrease in the molecular mass distribution of assigned species, consistent with laccase lytic activity. This reduction was predominantly in species classified as lignin-like (based on elemental ratios) and polymeric in nature (>400 Da). Of particular note was a fall in the number of species assigned containing sulfur. Changes in the chemical composition/structure of the lignin polymer were supported by FT-IR spectroscopy. We propose the use of FT-ICR MS as a rapid and efficient technique to support the biotechnological valorisation of lignin as well as the development and optimization of laccase-mediator systems for treating complex mixtures
Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation
A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization
13 p.-6 fig.-3 tab.A novel fungal laccase produced by the ascomycete Chaetomium sp. isolated from arid soil was purified and characterized and its ability to remove dyes was determined. Extracellular laccase was purified 15-fold from the crude culture to homogeneity with an overall yield of 50% using ultrafiltration and anion-exchange chromatography. The purified enzyme was found to be a monomeric protein with a molecular mass of 68 kDa, estimated by SDS-PAGE, and with an isoelectric point of 5.5. The optimal temperature and pH value for laccase activity toward 2,6-DMP were 60 °C and 3.0, respectively. It was stable at temperatures below 50 °C and at alkaline conditions. Kinetic study showed that this laccase showed higher affinity on ABTS than on 2,6-DMP. Its activity was enhanced by the presence of several metal ions such as Mg2+, Ca2+ and Zn2+, while it was strongly inhibited by Fe2+, Ag+ and Hg2+. The novel laccase also showed high, remarkable sodium chloride tolerance. Its ability to decolorize different dyes, with or without HBT (1-hydroxy-benzotriazole), as redox mediator, suggests that this protein may be useful for different industrial applications and/or bioremediation processes.Peer reviewe
Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes
Laccase–cellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residues
- …
