3 research outputs found
Differential expression of ADAMTS -1, -4, -5 and TIMP -3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis
Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) -1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and Tissue inhibitor of metalloproteinase (TIMP) -3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.</p
ADAMTS -1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are a recently described group of metalloproteinases. The substrates degraded by ADAMTS-1, -4 and -5 suggests that they play a role in turnover of extracellular matrix in the central nervous system (CNS). ADAMTS-1 is also known to exhibit anti-angiogenic activity. Their main endogenous inhibitor is tissue inhibitor of metalloproteinases (TIMP)-3.
The present study was designed to investigate ADAMTS-1, -4 and -5 and TIMP-3 expression after experimental cerebral ischaemia and to examine whether cytokines known to be up-regulated in stroke could alter their expression by astrocytes in vitro. Focal cerebral ischaemia was induced by transient middle cerebral artery occlusion in the rat using the filament method.
Our results demonstrate a significant increase in expression of ADAMTS-1 and -4 in the occluded hemisphere but no significant change in TIMP-3. This was accompanied by an increase in mRNA levels for interleukin (IL)-1, IL-1 receptor antagonist (IL-1ra) and tumour necrosis factor (TNF). ADAMTS-4 mRNA and protein was up-regulated by TNF in primary human astrocyte cultures. The increased ADAMTS-1 and -4 in experimental stroke, together with no change in TIMP-3, may promote ECM breakdown after stroke, enabling infiltration of inflammatory cells and contribute to brain injury. In vitro studies suggest that the in vivo modulation of ADAMTS-1 and -4 may be controlled in part by TNF.</p
Brevican and phosphacan expression and localization following transient middle cerebral artery occlusion in the rat
The ECM (extracellular matrix) is a complex molecular framework that provides physical support to cells and tissues, while also providing signals for cell growth, migration, differentiation and survival. The ECM of the CNS (central nervous system) is unusual in that it is rich in CSPGs (chondroitin sulfate proteoglycans),hyaluronan and tenascins. The CSPGs are widely expressed throughout the developing and adult CNS and have a role in guiding or limiting neurite outgrowth and cell migration. Alterations in the synthesis or breakdown of the ECM may contribute to disease processes. Here, we examine changes in the brain-specific CSPGs, brevican and phosphacan, following transient middle cerebral artery occlusion, a model of stroke in the rat. We have investigated their expression at various time points as well as their spatial relationship with ADAMTS-4 (a disintegrin andmetalloprotease with thrombospondin motifs 4). The co-localization of ADAMTS or its activity may indicate a functional role for this matrix–protease pair in degeneration/regeneration processes that occur in stroke.</p
