119 research outputs found

    Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network.

    Get PDF
    OBJECTIVE: This report presents data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network on care of and morbidity and mortality rates for very low birth weight infants, according to gestational age (GA). METHODS: Perinatal/neonatal data were collected for 9575 infants of extremely low GA (22-28 weeks) and very low birth weight (401-1500 g) who were born at network centers between January 1, 2003, and December 31, 2007. RESULTS: Rates of survival to discharge increased with increasing GA (6% at 22 weeks and 92% at 28 weeks); 1060 infants died at CONCLUSION: Although the majority of infants with GAs of \u3eor=24 weeks survive, high rates of morbidity among survivors continue to be observed

    Effect of Therapeutic Hypothermia Initiated After 6 Hours of Age on Death or Disability Among Newborns With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial

    Get PDF
    Importance: Hypothermia initiated at less than 6 hours after birth reduces death or disability for infants with hypoxic-ischemic encephalopathy at 36 weeks' or later gestation. To our knowledge, hypothermia trials have not been performed in infants presenting after 6 hours. Objective: To estimate the probability that hypothermia initiated at 6 to 24 hours after birth reduces the risk of death or disability at 18 months among infants with hypoxic-ischemic encephalopathy. Design, Setting, and Participants: A randomized clinical trial was conducted between April 2008 and June 2016 among infants at 36 weeks' or later gestation with moderate or severe hypoxic-ischemic encephalopathy enrolled at 6 to 24 hours after birth. Twenty-one US Neonatal Research Network centers participated. Bayesian analyses were prespecified given the anticipated limited sample size. Interventions: Targeted esophageal temperature was used in 168 infants. Eighty-three hypothermic infants were maintained at 33.5°C (acceptable range, 33°C-34°C) for 96 hours and then rewarmed. Eighty-five noncooled infants were maintained at 37.0°C (acceptable range, 36.5°C-37.3°C). Main Outcomes and Measures: The composite of death or disability (moderate or severe) at 18 to 22 months adjusted for level of encephalopathy and age at randomization. Results: Hypothermic and noncooled infants were term (mean [SD], 39 [2] and 39 [1] weeks' gestation, respectively), and 47 of 83 (57%) and 55 of 85 (65%) were male, respectively. Both groups were acidemic at birth, predominantly transferred to the treating center with moderate encephalopathy, and were randomized at a mean (SD) of 16 (5) and 15 (5) hours for hypothermic and noncooled groups, respectively. The primary outcome occurred in 19 of 78 hypothermic infants (24.4%) and 22 of 79 noncooled infants (27.9%) (absolute difference, 3.5%; 95% CI, -1% to 17%). Bayesian analysis using a neutral prior indicated a 76% posterior probability of reduced death or disability with hypothermia relative to the noncooled group (adjusted posterior risk ratio, 0.86; 95% credible interval, 0.58-1.29). The probability that death or disability in cooled infants was at least 1%, 2%, or 3% less than noncooled infants was 71%, 64%, and 56%, respectively. Conclusions and Relevance: Among term infants with hypoxic-ischemic encephalopathy, hypothermia initiated at 6 to 24 hours after birth compared with noncooling resulted in a 76% probability of any reduction in death or disability, and a 64% probability of at least 2% less death or disability at 18 to 22 months. Hypothermia initiated at 6 to 24 hours after birth may have benefit but there is uncertainty in its effectiveness

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial

    Get PDF
    Importance Hypothermia for 72 hours at 33.5°C for neonatal hypoxic-ischemic encephalopathy reduces death or disability, but rates continue to be high. Objective To determine if cooling for 120 hours or to a temperature of 32.0°C reduces death or disability at age 18 months in infants with hypoxic-ischemic encephalopathy. Design, Setting, and Participants Randomized 2 × 2 factorial clinical trial in neonates (≥36 weeks’ gestation) with hypoxic-ischemic encephalopathy at 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network between October 2010 and January 2016. Interventions A total of 364 neonates were randomly assigned to 4 hypothermia groups: 33.5°C for 72 hours (n = 95), 32.0°C for 72 hours (n = 90), 33.5°C for 120 hours (n = 96), or 32.0°C for 120 hours (n = 83). Main Outcomes and Measures The primary outcome was death or moderate or severe disability at 18 to 22 months of age adjusted for center and level of encephalopathy. Severe disability included any of Bayley Scales of Infant Development III cognitive score less than 70, Gross Motor Function Classification System (GMFCS) level of 3 to 5, or blindness or hearing loss despite amplification. Moderate disability was defined as a cognitive score of 70 to 84 and either GMFCS level 2, active seizures, or hearing with amplification. Results The trial was stopped for safety and futility in November 2013 after 364 of the planned 726 infants were enrolled. Among 347 infants (95%) with primary outcome data (mean age at follow-up, 20.7 [SD, 3.5] months; 42% female), death or disability occurred in 56 of 176 (31.8%) cooled for 72 hours and 54 of 171 (31.6%) cooled for 120 hours (adjusted risk ratio, 0.92 [95% CI, 0.68-1.25]; adjusted absolute risk difference, −1.0% [95% CI, −10.2% to 8.1%]) and in 59 of 185 (31.9%) cooled to 33.5°C and 51 of 162 (31.5%) cooled to 32.0°C (adjusted risk ratio, 0.92 [95% CI, 0.68-1.26]; adjusted absolute risk difference, −3.1% [95% CI, −12.3% to 6.1%]). A significant interaction between longer and deeper cooling was observed (P = .048), with primary outcome rates of 29.3% at 33.5°C for 72 hours, 34.5% at 32.0°C for 72 hours, 34.4% at 33.5°C for 120 hours, and 28.2% at 32.0°C for 120 hours. Conclusions and Relevance Among term neonates with moderate or severe hypoxic-ischemic encephalopathy, cooling for longer than 72 hours, cooling to lower than 33.5°C, or both did not reduce death or moderate or severe disability at 18 months of age. However, the trial may be underpowered, and an interaction was found between longer and deeper cooling. These results support the current regimen of cooling for 72 hours at 33.5°C

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Use of term reference infants in assessing the developmental outcome of extremely preterm infants: lessons learned in a multicenter study.

    Get PDF
    OBJECTIVE: Extremely preterm (EP) impairment rates are likely underestimated using the Bayley III norm-based thresholds scores and may be better assessed relative to concurrent healthy term reference (TR) infants born in the same hospital. STUDY DESIGN: Blinded, certified examiners in the Neonatal Research Network (NRN) evaluated EP survivors and a sample of healthy TR infants recruited near the 2-year assessment age. RESULTS: We assessed 1452 EP infants and 183 TR infants. TR-based thresholds showed higher overall EP impairment than Bayley norm-based thresholds (O.R. = 1.86; [95% CI 1.56-2.23], especially for severe impairment (36% vs. 24%; p ≤ 0.001). Difficulty recruiting TR patients at 2 years extended the study by 14 months and affected their demographics. CONCLUSION: Impairment rates among EP infants appear to be substantially underestimated from Bayley III norms. These rates may be best assessed by comparison with healthy term infants followed with minimal attrition from birth in the same centers

    Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly, PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation
    corecore