1,638 research outputs found
Second chances: Investigating athletes’ experiences of talent transfer
Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives
Reinforcement learning or active inference?
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain
Weak pairwise correlations imply strongly correlated network states in a neural population
Biological networks have so many possible states that exhaustive sampling is
impossible. Successful analysis thus depends on simplifying hypotheses, but
experiments on many systems hint that complicated, higher order interactions
among large groups of elements play an important role. In the vertebrate
retina, we show that weak correlations between pairs of neurons coexist with
strongly collective behavior in the responses of ten or more neurons.
Surprisingly, we find that this collective behavior is described quantitatively
by models that capture the observed pairwise correlations but assume no higher
order interactions. These maximum entropy models are equivalent to Ising
models, and predict that larger networks are completely dominated by
correlation effects. This suggests that the neural code has associative or
error-correcting properties, and we provide preliminary evidence for such
behavior. As a first test for the generality of these ideas, we show that
similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and
Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah
(http://cosyne.org
Foci of orientation plasticity in visual cortex
[Abstract] Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity1, 2, 3, 4. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains5 that converge at singularities or pinwheel centres6, 7. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1
String theoretic QCD axions in the light of PLANCK and BICEP2
The QCD axion solving the strong CP problem may originate from antisymmetric
tensor gauge fields in compactified string theory, with a decay constant around
the GUT scale. Such possibility appears to be ruled out now by the detection of
tensor modes by BICEP2 and the PLANCK constraints on isocurvature density
perturbations. A more interesting and still viable possibility is that the
string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry.
In such case, the axion decay constant can be much lower than the GUT scale if
moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and
U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to
a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern
of such models during the inflationary epoch with the Hubble expansion rate
10^{14} GeV, and identify the range of the QCD axion decay constant, as well as
the corresponding relic axion abundance, consistent with known cosmological
constraints. In addition to the case that the PQ symmetry is restored during
inflation, there are other viable scenarios, including that the PQ symmetry is
broken during inflation at high scales around 10^{16}-10^{17} GeV due to a
large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the
present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the
present value larger than 10^{12} GeV requires a fine-tuning of the axion
misalignment angle. We also discuss the implications of our results for the
size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full
anharmonic effects, references added, version accepted for publication in
JHE
Response to novel objects and foraging tasks by common marmoset (Callithrix Jacchus) female Pairs
Many studies have shown that environmental enrichment can significantly improve the psychological well-being of captive primates, increasing the occurrence of explorative behavior and thus reducing boredom. The response of primates to enrichment devices may be affected by many factors such as species, sex, age, personality and social context. Environmental enrichment is particularly important for social primates living in unnatural social groupings (i.e. same-sex pairs or singly housed animals), who have very few, or no, benefits from the presence of social companions in addition to all the problems related to captivity (e.g. increased inactivity). This study analyses the effects of enrichment devices (i.e. novel objects and foraging tasks) on the behavior of common marmoset (Callithrix jacchus) female pairs, a species that usually lives in family groups. It aims to determine which aspects of an enrichment device are more likely to elicit explorative behaviors, and how aggressive and stress-related behaviors are affected by its presence. Overall, the marmosets explored foraging tasks significantly longer than novel objects. The type of object, which varied in size, shape and aural responsiveness (i.e. they made a noise when the monkey touched them), did not affect the response of the monkeys, but they explored objects that were placed higher in the enclosure more than those placed lower down.Younger monkeys were more attracted to the enrichment devices than the older ones. Finally, stress-related behavior (i.e. scratching) significantly decreased when the monkeys were presented with the objects; aggressive behavior as unaffected. This study supports the importance of environmental enrichment for captive primates and shows that in marmosets its effectiveness strongly depends upon the height of the device in the enclosure and the presence of hidden food. The findings can be explained ifone considers the foraging behavior of wild common marmosets. Broader applications for the research findings are suggested in relation to enrichment
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Emerging issues and current trends in assistive technology use 2007-1010: practising, assisting and enabling learning for all
Following an earlier review in 2007, a further review of the academic literature relating to the uses of assistive technology (AT) by children and young people was completed, covering the period 2007-2011. As in the earlier review, a tripartite taxonomy: technology uses to train or practise, technology uses to assist learning and technology uses to enable learning, was used in order to structure the findings. The key markers for research in this field and during these three years were user involvement, AT on mobile mainstream devices, the visibility of AT, technology for interaction and collaboration, new and developing interfaces and inclusive design principles. The paper concludes by locating these developments within the broader framework of the Digital Divide
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Walking, sustainability and health: findings from a study of a Walking for Health group.
Not only is it tacitly understood that walking is good for health and wellbeing, there is now robust evidence to support this link. There is also growing evidence that regular short walks can be a protective factor for a range of long-term health conditions. Walking in the countryside can bring additional benefits, but access to the countryside brings complexities, especially for people with poorer material resources and from different ethnic communities. Reasons for people taking up walking as a physical activity are reasonably well understood, but factors linked to sustained walking, and therefore sustained benefit, are not. Based on an ethnographic study of a Walking for Health group in Lincolnshire, UK, this paper considers the motivations and rewards of group walks for older people. Nineteen members of the walking group, almost all with long-term conditions, took part in tape-recorded interviews about the personal benefits of walking. The paper provides insights into the links between walking as a sustainable activity and health, and why a combination of personal adaptive capacities, design elements of the walks and relational achievements of the walking group are important to this understanding. The paper concludes with some observations about the need to reframe conventional thinking about adherence to physical activity programmes
- …
