985 research outputs found

    Plethora (Novaluron + Indoxacarb) insecticide for the management of tomato fruit borer complex

    Get PDF
    During the past three decades, efforts have been made to reduce the risk of human exposure to pesticides specially insecticides. There is a great demand for safer and more selective insecticides that spare natural enemies and non target organisms. The present investigation was conducted during rabi season 2009 and 2010, to test the effectiveness of recently developed new ready mix insecticide Plethora (Novaluron 5.25 %+ Indoxacarb 4.5% SC) along with other insecticides against Helicoverpa armigera Hub and Spodoptera litura Fab. infesting tomato. It is observed that Plethora @ 875 ml/ha recorded only 3.75% fruit damage, while in control plot it was 45.6%. Though highest cost benefit ratio (1:6.17) was obtained when Plethora was applied at 825 ml/ha. Independently novaluron performed well specially against S. litura and indoxacarb showed better performance against H. armigera but lamda-cyhalothrin expressed comparatively lower performance than other selected insecticides which received 28.30% fruit infestation

    Unraveling the collinearity in short-range order parameters for lattice configurations arising from topological constraints

    Full text link
    In multicomponent lattice problems, e.g., in alloys, and at crystalline surfaces and interfaces, atomic arrangements exhibit spatial correlations that dictate the kinetic and thermodynamic phase behavior. These correlations emerge from interparticle interactions and are frequently reported in terms of the short-range order (SRO) parameter. Expressed usually in terms of pair distributions and other cluster probabilities, the SRO parameter gives the likelihood of finding atoms/molecules of a particular type in the vicinity of others atoms. This study focuses on fundamental constraints involving the SRO parameters that are imposed by the underlying lattice topology. Using a data-driven approach, we uncover the interrelationships between different SRO parameters (e.g., pairs, triplets, quadruplets, etc.) on a lattice. The main finding is that while some SRO parameters are independent, the remaining are collinear, i.e., the latter are dictated by the independent ones through linear relationships. A kinetic and thermodynamic modeling framework based on these constraints is introduced

    Modeling Biosorption Of Cadmium, Zinc And Lead Onto Native And Immobilized Citrus Peels In Batch And Fixed Bed Reactors

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2012Biosorption, i.e., the passive uptake of pollutants (heavy metals, dyes) from aqueous phase by biosorbents, obtained cheaply from natural sources or industrial/agricultural waste, can be a cost-effective alternative to conventional metal removal methods. Conventional methods such as chemical precipitation, membrane filtration or ion exchange are not suitable to treat large volumes of dilute discharge, such as mining effluent. This study is a continuation of previous research utilizing citrus peels for metal removal in batch reactors. Since fixed bed reactors feature better mass transfer and are typically used in water or waste water treatment using ion-exchange resins, this thesis focuses on packed bed columns. A number of fixed bed experiments were conducted by varying Cd inlet concentration (5-15 mg/L), bed height (24-75 cm) and flow rate (2-15.5 ml/min). Breakthrough and saturation uptake ranged between 14-29 mg/g and 42-45 mg/g respectively. An empty bed contact time of 10 minutes was required for optimum column operation. Breakthrough curves were described by mathematical models, whereby three popular models were shown to be mathematically identical. Citrus peels were immobilized within an alginate matrix to produce uniform granules with higher uptake capacity than raw peels. All breakthrough curves of native and immobilized peels were predicted using external and intra-particle mass transfer resistances from correlations and batch experiments, respectively. Several analogous mathematical models were identified; other frequently used models were shown to be the approximate derivatives of a single parent model. To determine the influence of competing metals, batch and fixed bed experiments were conducted in different binary combinations of Pb, Cd, Zn and Ca. Equilibrium data were analyzed by applying competitive, uncompetitive and partially competitive models. In column applications, high affinity Pb replaced previously bound Zn and Cd in Pb-Zn and Pb-Cd systems, respectively. However, the Cd-Zn system did not show any overshoot. Calcium, which is weakly bound, did not affect target metal binding as much as other metals. Saturated columns were desorbed with 0.1 N nitric acid to recover the metal, achieving concentration factors of 34-129. Finally, 5 g of citrus peels purified 5.40 L mining wastewater

    Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    Get PDF
    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co 3 O 4 /carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co 3 O 4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes
    corecore