440 research outputs found

    Phase diagram of ferrimagnetic ladders with bond-alternation

    Full text link
    We study the phase diagram of a 2-leg bond-alternation spin-(1/2, 1) ladder for two different configurations using a quantum renormalization group approach. Although d-dimensional ferrimagnets show gapless behavior, we will explicitly show that the effect of the spin mixing and the bond-alternation can open the possibility for observing an energy gap. We show that the gapless phases of such systems can be equivalent to the 1-dimensional half-integer antiferroamgnets, besides the gapless ferrimagnetic phases. We therefore propose a phase transition between these two gapless phases that can be seen in the parameter space.Comment: 5 pages and 3 ps figures, accepted in Phys. Rev.

    Performance engineering of semiconductor spin qubit systems

    Full text link
    The performance of a quantum computation system is investigated, with qubits represented by magnetic impurities in coupled quantum dots filled with two electrons. Magnetic impurities are electrically manipulated by electrons. The dominant noise source is the electron mediated indirect coupling between magnetic impurities and host spin bath. As a result of the electron mediated coupling, both noise properties and the time needed for elementary gate operations, depend on controllable system parameters, such as size and geometry of the quantum dot, and external electric and magnetic fields. We find that the maximum number of quantum operations per coherence time for magnetic impurities increases as electron spin singlet triplet energy gap decreases. The advantage of magnetic impurities over electrons for weak coupling and large magnetic fields will be illustrated.Comment: 5 page, 2 figur

    Renormalization of radiobiological response functions by energy loss fluctuations and complexities in chromosome aberration induction: deactivation theory for proton therapy from cells to tumor control

    Full text link
    We employ a multi-scale mechanistic approach to investigate radiation induced cell toxicities and deactivation mechanisms as a function of linear energy transfer in hadron therapy. Our theoretical model consists of a system of Markov chains in microscopic and macroscopic spatio-temporal landscapes, i.e., stochastic birth-death processes of cells in millimeter-scale colonies that incorporates a coarse-grained driving force to account for microscopic radiation induced damage. The coupling, hence the driving force in this process, stems from a nano-meter scale radiation induced DNA damage that incorporates the enzymatic end-joining repair and mis-repair mechanisms. We use this model for global fitting of the high-throughput and high accuracy clonogenic cell-survival data acquired under exposure of the therapeutic scanned proton beams, the experimental design that considers γ\gamma-H2AX as the biological endpoint and exhibits maximum observed achievable dose and LET, beyond which the majority of the cells undergo collective biological deactivation processes. An estimate to optimal dose and LET calculated from tumor control probability by extension to  106~ 10^6 cells per mmmm-size voxels is presented. We attribute the increase in degree of complexity in chromosome aberration to variabilities in the observed biological responses as the beam linear energy transfer (LET) increases, and verify consistency of the predicted cell death probability with the in-vitro cell survival assay of approximately 100 non-small cell lung cancer (NSCLC) cells

    Massive skyrmions in quantum Hall ferromagnets

    Full text link
    We apply the theory of elasticity to study the effects of skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock results to characterize the mass of quantum Hall skyrmions at ν=1\nu=1 and investigate how the low temperature phase of Skyrme lattices may be affected by the skyrmion mass.Comment: 6 pages and 2 figure
    corecore