1,406 research outputs found
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition
The promises and perils of the neuroscience of creativity.
Our ability to think creatively is one of the factors that generates excitement in our lives as it introduces novelty and opens up new possibilities to our awareness which in turn lead to developments in a variety of fields from science and technology to art and culture. While research on the influence of biologically-based variables on creativity has a long history, the advent of modern techniques for investigating brain structure and function in the past two decades have resulted in an exponential increase in the number of neuroscientific studies that have explored creativity. The field of creative neurocognition is a rapidly growing area of research that can appear chaotic and inaccessible because of the heterogeneity associated with the creativity construct and the many approaches through which it can be examined. There are also significant methodological and conceptual problems that are specific to the neuroscientific study of creativity that pose considerable limitations on our capacity to make true advances in understanding the brain basis of creativity. This article explores three key issues that need to be addressed so that barriers in the way of relevant progress being made within the field can be avoided. Are creativity neuroimaging paradigms optimal enough?What makes creative cognition different from normative cognition?Do we need to distinguish between types of creativity
Multimodal imagery in music: Active ingredients and mechanisms underlying musical engagement
Clinicians and researchers have provided strong evidence for the efficacy of Guided Imagery and Music (GIM) and similar therapies across a wide range of clinical conditions. What is still lacking is a theoretical framework that would allow identification of the ‘active ingredients’ in this process. This paper seeks to introduce a new systemic framework for investigating such therapies by examining the biological roots as well as the role of music in the regulation of individual and social life to maintain homeostasis via multimodality by means of arousal, imagery, attentional engagement, emotion, memory and analogous processes. Taking the work of Edelman, Damasio and other leaders of modern neuroscience as a point of departure, homeostasis and multimodality are presented as essential not only to the human life process in terms of our active mental life but also to the fullness of Edelman's "primary consciousness" and Damasio's "core self." The implications of these intricate cross-connections are considered as well as the unique propensity for music to spontaneously and multimodally engage these connections. Proposals to evaluate these ideas and stimulate further research in both basic science and clinical practice are made
Commentary: Creativity and Memory: Effects of an Episodic-Specificity Induction on Divergent Thinking
Comparing the efficacy of four brief inductions in boosting short-term creativity
Augmenting creative performance has the potential to benefit both the individual and our society. Several studies have evaluated the impact of different behavioral training or induction methods on creativity. However, the findings are mixed and sometimes contradictory. Four different short-term induction methods which differed along two information processing dimensions – modality and demand – were compared within a single experimental paradigm alongside a non-induction control condition to determine which was the most effective at improving creativity. A comparison on the experimental inductions revealed that low demand induction methods boosted creativity more than high demand induction methods. However, this pattern was not maintained when comparisons included the non-induction control. These findings provide insights on factors that need to be taken into account at the level of experimental design in order to be able to evaluate the efficacy of different induction and training methods on creativity
Long-lived stops in MSSM scenarios with a neutralino LSP
This work investigates the possibility of a long-lived stop squark in
supersymmetric models with the neutralino as the lightest supersymmetric
particle (LSP). We study the implications of meta-stable stops on the sparticle
mass spectra and the dark matter density. We find that in order to obtain a
sufficiently long stop lifetime so as to be observable as a stable R-hadron at
an LHC experiment, we need to fine tune the mass degeneracy between the stop
and the LSP considerably. This increases the stop-neutralino coanihilation
cross section, leaving the neutralino relic density lower than what is expected
from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios
are realised in nature we demonstrate that the long-lived stops will be
produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2
can be detected after one year of running at design luminosity
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
The Imaginative Mind
The astounding capacity for the human imagination to be engaged across a wide range of contexts is limitless and fundamental to our day-to-day experiences. Although processes of imagination are central to human psychological function, they rarely occupy center stage in academic discourse or empirical study within psychological and neuroscientific realms. The aim of the paper is to tackle this imbalance by drawing together the multitudinous facets of imagination within a common framework. The processes fall into one of five categories depending on whether they are characterized as involving perceptual/motor related mental imagery, intentionality or recollective processing, novel combinatorial or generative processing, exceptional phenomenology in the aesthetic response, or altered psychological states which range from commonplace to dysfunctional. These proposed categories are defined on the basis of theoretical ideas from philosophy as well as empirical evidence from neuroscience. By synthesizing the findings across these domains of imagination, this novel five-part or quinquepartite classification of the human imagination aids in systematizing, and thereby abets, our understanding of the workings and brain basis of the human imagination. It would serve as a blueprint to direct further advances in the field of imagination while also promoting crosstalk with reference to stimulus-oriented facets of information processing. A biologically and ecologically valid psychology is one that seeks to explain fundamental aspects of human nature. Given the ubiquitous nature of the imaginative operations in our daily lives, there can be little doubt that these quintessential aspects of the mind should be central to the discussion
- …
