1,167 research outputs found
An Integer Programming Approach to the Student-Project Allocation Problem with Preferences over Projects
The Student-Project Allocation problem with preferences over Projects (SPA-P) involves sets of students, projects and lecturers, where the students and lecturers each have preferences over the projects. In this context, we typically seek a stable matching of students to projects (and lecturers). However, these stable matchings can have different sizes, and the problem of finding a maximum stable matching (MAX-SPA-P) is NP-hard. There are two known approximation algorithms for MAX-SPA-P, with performance guarantees of 2 and 32 . In this paper, we describe an Integer Programming (IP) model to enable MAX-SPA-P to be solved optimally. Following this, we present results arising from an empirical analysis that investigates how the solution produced by the approximation algorithms compares to the optimal solution obtained from the IP model, with respect to the size of the stable matchings constructed, on instances that are both randomly-generated and derived from real datasets. Our main finding is that the 32 -approximation algorithm finds stable matchings that are very close to having maximum cardinality
Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs
© 2015 Wyrsch et al. Background: Enterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7. Results: O157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined. Conclusions: We present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex
Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang
The ionization fraction of cosmic hydrogen, left over from the big bang,
provides crucial fossil evidence for when the first stars and quasar black
holes formed in the infant universe. Spectra of the two most distant quasars
known show nearly complete absorption of photons with wavelengths shorter than
the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the
intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3,
about a billion years after the big bang. Here we show that the radii of
influence of ionizing radiation from these quasars imply that the surrounding
IGM had a neutral hydrogen fraction of tens of percent prior to the quasar
activity, much higher than previous lower limits of ~0.1%. When combined with
the recent inference of a large cumulative optical depth to electron scattering
after cosmological recombination from the WMAP data, our result suggests the
existence of a second peak in the mean ionization history, potentially due to
an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press
embargo until publishe
Complex-Distance Potential Theory and Hyperbolic Equations
An extension of potential theory in R^n is obtained by continuing the
Euclidean distance function holomorphically to C^n. The resulting Newtonian
potential is generated by an extended source distribution D(z) in C^n whose
restriction to R^n is the delta function. This provides a natural model for
extended particles in physics. In C^n, interpreted as complex spacetime, D(z)
acts as a propagator generating solutions of the wave equation from their
initial values. This gives a new connection between elliptic and hyperbolic
equations that does not assume analyticity of the Cauchy data. Generalized to
Clifford analysis, it induces a similar connection between solutions of
elliptic and hyperbolic Dirac equations. There is a natural application to the
time-dependent, inhomogeneous Dirac and Maxwell equations, and the
`electromagnetic wavelets' introduced previously are an example.Comment: 25 pages, submited to Proceedings of 5th Intern. Conf. on Clifford
Algebras, Ixtapa, June 24 - July 4, 199
Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models
A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Design of Experiments for Screening
The aim of this paper is to review methods of designing screening
experiments, ranging from designs originally developed for physical experiments
to those especially tailored to experiments on numerical models. The strengths
and weaknesses of the various designs for screening variables in numerical
models are discussed. First, classes of factorial designs for experiments to
estimate main effects and interactions through a linear statistical model are
described, specifically regular and nonregular fractional factorial designs,
supersaturated designs and systematic fractional replicate designs. Generic
issues of aliasing, bias and cancellation of factorial effects are discussed.
Second, group screening experiments are considered including factorial group
screening and sequential bifurcation. Third, random sampling plans are
discussed including Latin hypercube sampling and sampling plans to estimate
elementary effects. Fourth, a variety of modelling methods commonly employed
with screening designs are briefly described. Finally, a novel study
demonstrates six screening methods on two frequently-used exemplars, and their
performances are compared
The evolution of multiple active site configurations in a designed enzyme
Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis
Recommended from our members
An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project
A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993–2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
- …
