125 research outputs found
Dynamics of the Chiral Magnetic Effect in a weak magnetic field
We investigate the real-time dynamics of the chiral magnetic effect in
quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a
field configuration of parallel (chromo)electric and (chromo)magnetic fields
with a weak perpendicular electromagnetic magnetic field. The chiral magnetic
effect induces an electromagnetic current along this perpendicular magnetic
field, which we will compute using linear response theory. We discuss specific
results for a homogeneous sudden switch-on and a pulsed (chromo)electric field
in a static and homogeneous (chromo)magnetic field. Our methodology can be
easily extended to more general situations. The results are useful for
investigating the chiral magnetic effect with heavy ion collisions and with
lasers that create strong electromagnetic fields. As a side result we obtain
the rate of chirality production for massive fermions in parallel electric and
magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte
Electromagnetic field evolution in relativistic heavy-ion collisions
The hadron string dynamics (HSD) model is generalized to include the creation
and evolution of retarded electromagnetic fields as well as the influence of
the magnetic and electric fields on the quasiparticle propagation. The
time-space structure of the fields is analyzed in detail for non-central Au+Au
collisions at 200 GeV. It is shown that the created magnetic
field is highly inhomogeneous but in the central region of the overlapping
nuclei it changes relatively weakly in the transverse direction. For the impact
parameter 10 fm the maximal magnetic field - perpendicularly to the
reaction plane - is obtained of order 5 for a very short time
0.2 fm/c, which roughly corresponds to the time of a maximal overlap of
the colliding nuclei. We find that at any time the location of the maximum in
the distribution correlates with that of the energy density of the
created particles. In contrast, the electric field distribution, being also
highly inhomogeneous, has a minimum in the center of the overlap region.
Furthermore, the field characteristics are presented as a function of the
collision energy and the centrality of the collisions. To explore the effect of
the back reaction of the fields on hadronic observables a comparison of HSD
results with and without fields is exemplified. Our actual calculations show no
noticeable influence of the electromagnetic fields - created in heavy-ion
collisions - on the effect of the electric charge separation with respect to
the reaction plane.Comment: 17 pages, 22 figures, title changed by editor, accepted for PR
Chiral Magnetic Effect on the Lattice
We review recent progress on the lattice simulations of the chiral magnetic
effect. There are two different approaches to analyze the chiral magnetic
effect on the lattice. In one approach, the charge density distribution or the
current fluctuation is measured under a topological background of the gluon
field. In the other approach, the topological effect is mimicked by the chiral
chemical potential, and the induced current is directly measured. Both
approaches are now developing toward the exact analysis of the chiral magnetic
effect.Comment: to appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
Lattice QCD Simulations in External Background Fields
We discuss recent results and future prospects regarding the investigation,
by lattice simulations, of the non-perturbative properties of QCD and of its
phase diagram in presence of magnetic or chromomagnetic background fields.
After a brief introduction to the formulation of lattice QCD in presence of
external fields, we focus on studies regarding the effects of external fields
on chiral symmetry breaking, on its restoration at finite temperature and on
deconfinement. We conclude with a few comments regarding the effects of
electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear
in Lect. Notes Phys. "Strongly interacting matter in magnetic fields"
(Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
Recommended from our members
APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS
This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels
Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background
We perform a model study of deconfinement and chiral symmetry restoration in
a strong magnetic background. We use a Nambu-Jona Lasinio model with the
Polyakov loop, taking into account a possible dependence of the coupling on the
Polyakov loop expectation value, as suggested by the recent literature. Our
main result is that, within this model, the deconfinement and chiral crossovers
of QCD in strong magnetic field are entangled even at the largest value of
considered here, namely (that is,
Tesla). The amount of split that we measure is, at this value of , of the
order of 2%. We also study briefly the role of the 8-quark term on the
entanglement of the two crossovers. We then compare the phase diagram of this
model with previous results, as well as with available Lattice data.Comment: 12 pages, 6 figures, RevTeX 4-1 style. Some reference added. Some
typos corrected. To appear on Physical Review
Recommended from our members
APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS.
Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation
Recommended from our members
APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS
Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation
Murine factor H co-produced in yeast with protein disulfide isomerase ameliorated C3 dysregulation in factor H-Deficient mice
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen
Application of polyurethane foam for impact absorption and thermal insulation for general purpose radioactive materials packagings
- …
