3,355 research outputs found

    Discrete quantum modes of the Dirac field in AdSd+1AdS_{d+1} backgrounds

    Full text link
    It is shown that the free Dirac equation in spherically symmetric static backgrounds of any dimensions can be put in a simple form using a special version of Cartesian gauge in Cartesian coordinates. This is manifestly covariant under the transformations of the isometry group so that the generalized spherical coordinates can be separated in terms of angular spinors like in the flat case, obtaining a pair of radial equations. In this approach the equation of the free field Dirac in AdSd+1AdS_{d+1} backgrounds is analytically solved obtaining the formula of the energy levels and the corresponding normalized eigenspinors.Comment: 18 pages, Latex. Submitted to Phys.Rev.

    Approximative analytical solutions of the Dirac equation in Schwarzschild spacetime

    Full text link
    Approximative analytic solutions of the Dirac equation in the geometry of Schwarzschild black holes are derived obtaining information about the discrete energy levels and the asymptotic behavior of the energy eigenspinors.Comment: 8 page

    Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry

    Full text link
    We derive a transformation of the noncommutative geometry inspired Schwarzschild solution into new coordinates such that the apparent unphysical singularities of the metric are removed. Moreover, we give the maximal singularity-free atlas for the manifold with the metric under consideration. This atlas reveals many new features e.g. it turns out to describe an infinite lattice of asymptotically flat universes connected by black hole tunnels.Comment: 17 pages LaTex, 2 figure

    On the convergence of second order spectra and multiplicity

    Full text link
    Let A be a self-adjoint operator acting on a Hilbert space. The notion of second order spectrum of A relative to a given finite-dimensional subspace L has been studied recently in connection with the phenomenon of spectral pollution in the Galerkin method. We establish in this paper a general framework allowing us to determine how the second order spectrum encodes precise information about the multiplicity of the isolated eigenvalues of A. Our theoretical findings are supported by various numerical experiments on the computation of inclusions for eigenvalues of benchmark differential operators via finite element bases.Comment: 22 pages, 2 figures, 4 tables, research paper

    Theory of 4e versus 2e supercurrent in frustrated Josepshon-junction rhombi chain

    Full text link
    We consider a chain of Josepshon-junction rhombi (proposed originally in \cite{Doucot}) in quantum regime, and in the realistic case when charging effects are determined by junction capacitances. In the maximally frustrated case when magnetic flux through each rhombi Φr\Phi_r is equal to one half of superconductive flux quantum Φ0\Phi_0, Josepshon current is due to correlated transport of {\em pairs of Cooper pairs}, i.e. charge is quantized in units of 4e4e. Sufficiently strong deviation δΦΦrΦ0/2>δΦc \delta\Phi \equiv |\Phi_r-\Phi_0/2| > \delta\Phi^c from the maximally frustrated point brings the system back to usual 2e2e-quantized supercurrent. We present detailed analysis of Josepshon current in the fluctuation-dominated regime (sufficiently long chains) as function of the chain length, EJ/ECE_J/E_C ratio and flux deviation δΦ \delta\Phi. We provide estimates for the set of parameters optimized for the observation of 4e4e-supercurrent.Comment: 23 pages, 9 figure

    Traveling waves and Compactons in Phase Oscillator Lattices

    Full text link
    We study waves in a chain of dispersively coupled phase oscillators. Two approaches -- a quasi-continuous approximation and an iterative numerical solution of the lattice equation -- allow us to characterize different types of traveling waves: compactons, kovatons, solitary waves with exponential tails as well as a novel type of semi-compact waves that are compact from one side. Stability of these waves is studied using numerical simulations of the initial value problem.Comment: 22 pages, 25 figure

    Vacuum energy between a sphere and a plane at finite temperature

    Full text link
    We consider the Casimir effect for a sphere in front of a plane at finite temperature for scalar and electromagnetic fields and calculate the limiting cases. For small separation we compare the exact results with the corresponding ones obtained in proximity force approximation. For the scalar field with Dirichlet boundary conditions, the low temperature correction is of order T2T^2 like for parallel planes. For the electromagnetic field it is of order T4T^4. For high temperature we observe the usual picture that the leading order is given by the zeroth Matsubara frequency. The non-zero frequencies are exponentially suppressed except for the case of close separation.Comment: 14 pages, 3 figures, revised version with several improvement

    Position and Momentum Uncertainties of the Normal and Inverted Harmonic Oscillators under the Minimal Length Uncertainty Relation

    Full text link
    We analyze the position and momentum uncertainties of the energy eigenstates of the harmonic oscillator in the context of a deformed quantum mechanics, namely, that in which the commutator between the position and momentum operators is given by [x,p]=i\hbar(1+\beta p^2). This deformed commutation relation leads to the minimal length uncertainty relation \Delta x > (\hbar/2)(1/\Delta p +\beta\Delta p), which implies that \Delta x ~ 1/\Delta p at small \Delta p while \Delta x ~ \Delta p at large \Delta p. We find that the uncertainties of the energy eigenstates of the normal harmonic oscillator (m>0), derived in Ref. [1], only populate the \Delta x ~ 1/\Delta p branch. The other branch, \Delta x ~ \Delta p, is found to be populated by the energy eigenstates of the `inverted' harmonic oscillator (m<0). The Hilbert space in the 'inverted' case admits an infinite ladder of positive energy eigenstates provided that \Delta x_{min} = \hbar\sqrt{\beta} > \sqrt{2} [\hbar^2/k|m|]^{1/4}. Correspondence with the classical limit is also discussed.Comment: 16 pages, 31 eps figure

    Structure of penetrable-rod fluids: Exact properties and comparison between Monte Carlo simulations and two analytic theories

    Get PDF
    Bounded potentials are good models to represent the effective two-body interaction in some colloidal systems, such as dilute solutions of polymer chains in good solvents. The simplest bounded potential is that of penetrable spheres, which takes a positive finite value if the two spheres are overlapped, being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model is far from trivial, since interactions are not restricted to nearest neighbors and so its exact solution is not known. In this paper we first derive the exact correlation functions of penetrable-rod fluids to second order in density at any temperature, as well as in the high-temperature and zero-temperature limits at any density. Next, two simple analytic theories are constructed: a high-temperature approximation based on the exact asymptotic behavior in the limit TT\to\infty and a low-temperature approximation inspired by the exact result in the opposite limit T0T\to 0. Finally, we perform Monte Carlo simulations for a wide range of temperatures and densities to assess the validity of both theories. It is found that they complement each other quite well, exhibiting a good agreement with the simulation data within their respective domains of applicability and becoming practically equivalent on the borderline of those domains. A perspective on the extension of both approaches to the more realistic three-dimensional case is provided.Comment: 19 pages, 11 figures, 4 tables: v2: minor changes; published final versio

    Remarks on the spherical waves of the Dirac field on de Sitter spacetime

    Full text link
    The Shishkin's solutions of the Dirac equation in spherical moving frames of the de Sitter spacetime are investigated pointing out the set of commuting operators whose eigenvalues determine the integration constants. It is shown that these depend on the usual angular quantum numbers and, in addition, on the value of the scalar momentum. With these elements a new result is obtained finding the system of solutions normalized (in generalized sense) in the scale of scalar momentum.Comment: 7 pages, no figure
    corecore