310 research outputs found
On radiative damping in plasma-based accelerators
Radiative damping in plasma-based electron accelerators is analyzed. The
electron dynamics under combined influence of the constant accelerating force
and the classical radiation reaction force is studied. It is shown that
electron acceleration cannot be limited by radiation reaction. If initially the
accelerating force was stronger than the radiation reaction force then the
electron acceleration is unlimited. Otherwise the electron is decelerated by
radiative damping up to a certain instant of time and then accelerated without
limits. Regardless of the initial conditions the infinite-time asymptotic
behavior of an electron is governed by self-similar solution providing
unlimited acceleration. The relative energy spread induced by the radiative
damping decreases with time in the infinite-time limit
Chern-Simons Correlations on (2+1)D Lattice
We have computed the contribution of zero modes to the value of the number of
particles in the model of discrete (2+1)-dimensional nonlinear Schr\"odinger
equation. It is shown for the first time that in the region of small values of
the Chern-Simons coefficient k there exists a universal attraction between
field configurations. For k=2 this phenomenon may be a dynamic origin of the
semion pairing in high temperature superconducting state of planar systems.Comment: 9 pages, 2 figures Sabj-class: Strongly Correlated Electron
Energy Bounds of Linked Vortex States
Energy bounds of knotted and linked vortex states in a charged two-component
system are considered. It is shown that a set of local minima of free energy
contains new classes of universality. When the mutual linking number of vector
order parameter vortex lines is less than the Hopf invariant, these states have
lower-lying energies.Comment: 4 pages, Latex2
Development of a Tuned Interfacial Force Field Parameter Set for the Simulation of Protein Adsorption to Silica Glass
Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface
Saturable discrete vector solitons in one-dimensional photonic lattices
Localized vectorial modes, with equal frequencies and mutually orthogonal
polarizations, are investigated both analytically and experimentally in a
one-dimensional photonic lattice with saturable nonlinearity. It is shown that
these modes may span over many lattice elements and that energy transfer among
the two components is both phase and intensity dependent. The transverse
electrically polarized mode exhibits a single-hump structure and spreads in
cascades in saturation, while the transverse magnetically polarized mode
exhibits splitting into a two-hump structure. Experimentally such discrete
vector solitons are observed in lithium niobate lattices for both coherent and
mutually incoherent excitations.Comment: 4 pages, 5 figures (reduced for arXiv
System for Contributing and Discovering Derived Mission and Science Data
A system was developed to provide a new mechanism for members of the mission community to create and contribute new science data to the rest of the community. Mission tools have allowed members of the mission community to share first order data (data that is created by the mission s process in command and control of the spacecraft or the data that is captured by the craft itself, like images, science results, etc.). However, second and higher order data (data that is created after the fact by scientists and other members of the mission) was previously not widely disseminated, nor did it make its way into the mission planning process
An Extensible, User- Modifiable Framework for Planning Activities
This software provides a development framework that allows planning activities for the Mars Science Laboratory rover to be altered at any time, based on changes of the Activity Dictionary. The Activity Dictionary contains the definition of all activities that can be carried out by a particular asset (robotic or human). These definitions (and combinations of these definitions) are used by mission planners to give a daily plan of what a mission should do. During the development and course of the mission, the Activity Dictionary and actions that are going to be carried out will often be changed. Previously, such changes would require a change to the software and redeployment. Now, the Activity Dictionary authors are able to customize activity definitions, parameters, and resource usage without requiring redeployment. This software provides developers and end users the ability to modify the behavior of automatically generated activities using a script. This allows changes to the software behavior without incurring the burden of redeployment. This software is currently being used for the Mars Science Laboratory, and is in the process of being integrated into the LADEE (Lunar Atmosphere and Dust Environment Explorer) mission, as well as the International Space Station
- …
