132 research outputs found

    Instrument Design and In Orbit Performance of Planetary L1dars at NASA GSFC

    Get PDF
    Space lidars provides a unique and powerful tool in earth environment monitoring and planetary exploration. Lidars operate at a much shorter wavelength than radars and can have a much narrower beam and much smaller transmitter and receiver. Lidars carry their own light sources and can continue measurement day and night, and over polar regions, where the passive instruments cannot observe. NASA Goddard Space Flight Center (GSFC) has developed several space lidars, three of them on planetary missions. These were the Mars Orbiter Laser Altimeter (MOLA) on the Mars Observer and Mars Global Surveyor missions, the Mercury Laser Altimeter (MLA) on the MErcury Surface Space ENvironment, GEochemistry and Ranging (MESSENGER) mission and the Lunar Orbital Laser Altimeter (LOLA) on the Lunar Reconnaissance (LRO) mission. These lidars all use similar technologies but with major improvement from one instrument In the next in size, power, measurement capability and operating environment

    Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    Get PDF
    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry

    HgCdTe Avalanche Photodiode Array Detectors with Single Photon Sensitivity and Integrated Detector Cooler Assemblies for Space Lidar Applications

    Get PDF
    A HgCdTe avalanche photodiode (APD) focal plane array assembly with linear mode photon-counting capability has been developed for space lidar applications. An integrated detector cooler assembly (IDCA) has been built using a miniature Stirling cooler. A microlens array has been included to improve the fill factor. The HgCdTe APD has a spectral response from 0.9- to 4.3-m wavelengths, a photon detection efficiency as high as 70%, and a dark count rate of <250 kHz at 110 K. The mass of the IDCA is 0.8 kg and the total electrical power consumption is about 7 W. The HgCdTe APD arrays have been characterized at NASA Goddard Space Flight Center. A series of environmental tests have been conducted for the IDCAs, including vibration, thermal cycling, and thermal vacuum tests. A description of the device and the test results at NASA are given in this paper

    Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    Get PDF
    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument

    ICESat GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    Get PDF
    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of Earths ice sheet elevations, sea-ice thickness and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to Earths surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode (SiAPD) and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than planned, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as 50 cm for ice and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates to those derived from Global Positioning System (GPS) surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet

    Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS): Final Report of the ASCENDS Ad Hoc Science Definition Team

    Get PDF
    Improved remote sensing observations of atmospheric carbon dioxide (CO2) are critically needed to quantify, monitor, and understand the Earth's carbon cycle and its evolution in a changing climate. The processes governing ocean and terrestrial carbon uptake remain poorly understood,especially in dynamic regions with large carbon stocks and strong vulnerability to climate change,for example, the tropical land biosphere, the northern hemisphere high latitudes, and the Southern Ocean. Because the passive spectrometers used by GOSAT (Greenhouse gases Observing SATellite) and OCO-2 (Orbiting Carbon Observatory-2) require sunlit and cloud-free conditions,current observations over these regions remain infrequent and are subject to biases. These short comings limit our ability to understand and predict the processes controlling the carbon cycle on regional to global scales.In contrast, active CO2 remote-sensing techniques allow accurate measurements to be taken day and night, over ocean and land surfaces, in the presence of thin or scattered clouds, and at all times of year. Because of these benefits, the National Research Council recommended the National Aeronautics and Space Administration (NASA) Active Sensing of CO2 Emissions over Nights,Days, and Seasons (ASCENDS) mission in the 2007 report Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. The ability of ASCENDS to collect low-bias observations in these key regions is expected to address important gaps in our knowledge of the contemporary carbon cycle.The ASCENDS ad hoc Science Definition Team (SDT), comprised of carbon cycle modeling and active remote sensing instrument teams throughout the United States (US), worked to develop the mission's requirements and advance its readiness from 2008 through 2018. Numerous scientific investigations were carried out to identify the benefit and feasibility of active CO2 remote sensing measurements for improving our understanding of CO2 sources and sinks. This report summarizes their findings and recommendations based on mission modeling studies, analysis of ancillary meteorological data products, development and demonstration of candidate technologies, anddesign studies of the ASCENDS mission concept

    Single Photon HgCdTe Avalanche Photodiode and Integrated Detector Cooler Assemblies for Space Lidar Applications

    Get PDF
    A linear mode photon counting HgCdTe avalanche photodiode (APD) focal plane array (FPA) detector was developed for space lidar applications. An integrated detector cooler assembly (IDCA) was manufactured using a miniature Stirling cooler. The HgCdTe APD demonstrated a greater than 60% photon detection efficiency from 0.9 to 4.3 m wavelength and a dark count rate less than 250,000/s. The IDCA cooled the FPA to 110K from ambient room temperature at a total electrical power of 7 W. The IDCA has passed environmental tests, including vibration, thermal cycling and thermal vacuum tests

    EVANGELICAL CRISES AND EVERYDAY LIFE

    Get PDF
    On July 11th, 2015, a man walked down Pearl Street Mall in Boulder, Colorado, pressing a collapsible plastic step stool and two signs between his right arm and his torso. After stopping to survey his surroundings, he unfolded the small stool and carefully placed it on the brick walkway, centering it on the glass entryway of the building behind him. Above the entrance the words “Court House” were carved in stone. He leaned one sign against the side of the stool, “JESUS SAVES,” and placed the other on the opposite side, “Evolution is a LIE, JESUS is LIFE.” He emptied his backpack behind the portable pulpit: a bottle of water, a Bible, some sunscreen, and several hundred pamphlets wrapped in two rubber bands. After twisting open the bottle and taking a drink of water, he kneeled on the sidewalk and prayed in silence for several minutes as people politely walked by him, parting like redirected tributaries. Amidst the murmur of the passing crowd, the man caught a single word from a woman’s mouth, perhaps directed at him, probably not. He stepped up on his stool, extended his Bible toward the woman and punctuated the hum of the sidewalk… “Justice!?

    Trends in Venous Thromboembolism Anticoagulation in Patients Hospitalized With COVID-19

    Get PDF
    Importance: Venous thromboembolism (VTE) is a common complication of COVID-19. It is not well understood how hospitals have managed VTE prevention and the effect of prevention strategies on mortality. Objective: To characterize frequency, variation across hospitals, and change over time in VTE prophylaxis and treatment-dose anticoagulation in patients hospitalized for COVID-19, as well as the association of anticoagulation strategies with in-hospital and 60-day mortality. Design, Setting, and Participants: This cohort study of adults hospitalized with COVID-19 used a pseudorandom sample from 30 US hospitals in the state of Michigan participating in a collaborative quality initiative. Data analyzed were from patients hospitalized between March 7, 2020, and June 17, 2020. Data were analyzed through March 2021. Exposures: Nonadherence to VTE prophylaxis (defined as missing ≥2 days of VTE prophylaxis) and receipt of treatment-dose or prophylactic-dose anticoagulants vs no anticoagulation during hospitalization. Main Outcomes and Measures: The effect of nonadherence and anticoagulation strategies on in-hospital and 60-day mortality was assessed using multinomial logit models with inverse probability of treatment weighting. Results: Of a total 1351 patients with COVID-19 included (median [IQR] age, 64 [52-75] years; 47.7% women, 48.9% Black patients), only 18 (1.3%) had a confirmed VTE, and 219 (16.2%) received treatment-dose anticoagulation. Use of treatment-dose anticoagulation without imaging ranged from 0% to 29% across hospitals and increased over time (adjusted odds ratio [aOR], 1.46; 95% CI, 1.31-1.61 per week). Of 1127 patients who ever received anticoagulation, 392 (34.8%) missed 2 or more days of prophylaxis. Missed prophylaxis varied from 11% to 61% across hospitals and decreased markedly over time (aOR, 0.89; 95% CI, 0.82-0.97 per week). VTE nonadherence was associated with higher 60-day (adjusted hazard ratio [aHR], 1.31; 95% CI, 1.03-1.67) but not in-hospital mortality (aHR, 0.97; 95% CI, 0.91-1.03). Receiving any dose of anticoagulation (vs no anticoagulation) was associated with lower in-hospital mortality (only prophylactic dose: aHR, 0.36; 95% CI, 0.26-0.52; any treatment dose: aHR, 0.38; 95% CI, 0.25-0.58). However, only the prophylactic dose of anticoagulation remained associated with lower mortality at 60 days (prophylactic dose: aHR, 0.71; 95% CI, 0.51-0.90; treatment dose: aHR, 0.92; 95% CI, 0.63-1.35). Conclusions and Relevance: This large, multicenter cohort of patients hospitalized with COVID-19, found evidence of rapid dissemination and implementation of anticoagulation strategies, including use of treatment-dose anticoagulation. As only prophylactic-dose anticoagulation was associated with lower 60-day mortality, prophylactic dosing strategies may be optimal for patients hospitalized with COVID-19
    corecore