2,039 research outputs found

    Good Learning and Implicit Model Enumeration

    Get PDF
    MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation

    Events with Isolated Charged Leptons and Large Missing Transverse Momentum at HERA

    Full text link
    Striking events with isolated charged leptons, large missing transverse momentum and large transverse momentum of the hadronic final state were observed at the electron proton collider HERA in a data sample corresponding to a luminosity of about 130 pb-1. The H1 collaboration observed 11 events with isolated electrons or muons and with transverse momentum above 25 GeV. Only 3.4+-0.6 events were expected from Standard Model (SM) processes. Six of these events have a transverse momentum of greater than 40 GeV, while 1.3+-0.3 events were expected. The ZEUS collaboration observed good agreement with the SM. However, ZEUS found two events with a similar event topology, but tau leptons instead of electrons or muons in the final state. Only 0.2+-0.05 events were expected from SM processes. For various hypotheses the compatibility of the experimental results was investigated with respect to the SM and with respect to possible explanations beyond the SM. Prospects for the high-luminosity HERA-II data taking period are given

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    Engineered arrays of NV color centers in diamond based on implantation of CN- molecules through nanoapertures

    Full text link
    We report a versatile method to engineer arrays of nitrogen-vacancy (NV) color centers in dia- mond at the nanoscale. The defects were produced in parallel by ion implantation through 80 nm diameter apertures patterned using electron beam lithography in a PMMA layer deposited on a diamond surface. The implantation was performed with CN- molecules which increased the NV defect formation yield. This method could enable the realization of a solid-state coupled-spin array and could be used for positioning an optically active NV center on a photonic microstructure.Comment: 12 pages, 3 figure

    Highlighting continued uncertainty in global land cover maps for the user community

    Get PDF
    In the last 10 years a number of new global datasets have been created and new, more sophisticated alorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (50 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disargeement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these prducts, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more 'in situ' data for training, calibration and validation are very important conditions for improving future global land cover products

    Bosonic Quartic Couplings at LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W- gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After a careful study of the backgrounds and how to extract them from the data, we show that the process p p -> j j gamma l+ l- is potentially the most sensitive to deviations from the Standard Model, improving the sensitivity to anomalous couplings by up to a factor 10^4 (10^2) with respect to the present direct (indirect) limits.Comment: 18 pages, 2 figures, revised versio

    Anomalously interacting new extra vector bosons and their first LHC constraints

    Full text link
    In this review phenomenological consequences of the Standard Model extension by means of new spin-1 chiral fields with the internal quantum numbers of the electroweak Higgs doublets are summarized. The prospects for resonance production and detection of the chiral vector ZZ^* and W±W^{*\pm} bosons at the LHC energies are considered. The ZZ^* boson can be observed as a Breit-Wigner resonance peak in the invariant dilepton mass distributions in the same way as the well-known extra gauge ZZ' bosons. However, the ZZ^* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow one to distinguish them from other heavy neutral resonances. In 2010, with 40 pb1^{-1} of the LHC proton-proton data at the energy 7 TeV, the ATLAS detector was used to search for narrow resonances in the invariant mass spectrum of e+ee^+e^- and μ+μ\mu^+\mu^- final states and high-mass charged states decaying to a charged lepton and a neutrino. No statistically significant excess above the Standard Model expectation was observed. The exclusion mass limits of 1.15 TeV/c2/c^2 and 1.35 TeV/c2/c^2 were obtained for the chiral neutral ZZ^* and charged WW^* bosons, respectively. These are the first direct limits on the WW^* and ZZ^* boson production. For almost all currently considered exotic models the relevant signal is expected in the central dijet rapidity region. On the contrary, the chiral bosons do not contribute to this region but produce an excess of dijet events far away from it. For these bosons the appropriate kinematic restrictions lead to a dip in the centrality ratio distribution over the dijet invariant mass instead of a bump expected in the most exotic models.Comment: 24 pages, 34 figure, based on talk given by V.A.Bednyakov at 15th Lomonosov conference, 22.08.201

    RECAST: Extending the Impact of Existing Analyses

    Full text link
    Searches for new physics by experimental collaborations represent a significant investment in time and resources. Often these searches are sensitive to a broader class of models than they were originally designed to test. We aim to extend the impact of existing searches through a technique we call 'recasting'. After considering several examples, which illustrate the issues and subtleties involved, we present RECAST, a framework designed to facilitate the usage of this technique.Comment: 13 pages, 4 figure

    Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes

    Full text link
    When network and graph theory are used in the study of complex systems, a typically finite set of nodes of the network under consideration is frequently either explicitly or implicitly considered representative of a much larger finite or infinite region or set of objects of interest. The selection procedure, e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants of various commonly used statistical network measures. The practical relevance and applicability of our approach is demonstrated for a number of example networks from different fields of research, and is shown to be of fundamental importance in particular in the study of spatially embedded functional networks derived from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure

    Detection of forest degradation caused by fires in Amazonia from time series of MODIS fraction images

    Get PDF
    A new method is presented to detect and assess the extent of burned forests in a tropical ecosystem. Our study area is located in Mato Grosso state southern flank of the Brazilian Amazon region. MODIS images are used over the dry season of year 2010. The proposed method is based on (i) linear spectral mixing model applied to MODIS imagery to derive soil and shade fraction images and (ii) image segmentation and classification applied to a multi-temporal dataset of MODIS-derived images. In a first step, deforested areas are identified and mapped from the soil fraction images while burned areas are identified and mapped from the shade fraction images. Then, burned forest areas are mapped by combining a forest/non forest mask with the resulting burned area map. Our results show that 14,220 km2 of forests were degraded by fire in Mato Grosso during year 2010. Our approach can be potentially used operationally for detecting forest degradation due to fires. The proposed method can also be applied to time series of medium and high spatial resolution images for regional and local analysis.JRC.H.3-Forest Resources and Climat
    corecore