2,799 research outputs found

    The synthesis of some acylglycines and related oxazolones

    Get PDF
    No description supplie

    Liquid drop splashing on smooth, rough and textured surfaces

    Full text link
    Splashing occurs when a liquid drop hits a dry solid surface at high velocity. This paper reports experimental studies of how the splash depends on the roughness and the texture of the surfaces as well as the viscosity of the liquid. For smooth surfaces, there is a "corona" splash caused by the presence of air surrounding the drop. There are several regimes that occur as the velocity and liquid viscosity are varied. There is also a "prompt" splash that depends on the roughness and texture of the surfaces. A measurement of the size distribution of the ejected droplets is sensitive to the surface roughness. For a textured surface in which pillars are arranged in a square lattice, experiment shows that the splashing has a four-fold symmetry. The splash occurs predominantly along the diagonal directions. In this geometry, two factors affect splashing the most: the pillar height and spacing between pillars.Comment: 9 pages, 11 figure

    Water entry of a flat elastic plate at high horizontal speed

    Get PDF
    The two-dimensional problem of an elastic-plate impact onto an undisturbed surface of water of infinite depth is analysed. The plate is forced to move with a constant horizontal velocity component which is much larger than the vertical velocity component of penetration. The small angle of attack of the plate and its vertical velocity vary in time, and are determined as part of the solution, together with the elastic deflection of the plate and the hydrodynamic loads within the potential flow theory. The boundary conditions on the free surface and on the wetted part of the plate are linearized and imposed on the initial equilibrium position of the liquid surface. The wetted part of the plate depends on the plate motion and its elastic deflection. To determine the length of the wetted part we assume that the spray jet in front of the advancing plate is negligible. A smooth separation of the free-surface flow from the trailing edge is imposed. The wake behind the moving body is included in the model. The plate deflection is governed by Euler’s beam equation, subject to free–free boundary conditions. Four different regimes of plate motion are distinguished depending on the impact conditions: (a) the plate becomes fully wetted; (b) the leading edge of the plate touches the water surface and traps an air cavity; (c) the free surface at the forward contact point starts to separate from the plate; (d) the plate exits the water. We could not detect any impact conditions which lead to steady planing of the free plate after the impact. It is shown that a large part of the total energy in the fluid–plate interaction leaves the main bulk of the liquid with the spray jet. It is demonstrated that the flexibility of the plate may increase the hydrodynamic loads acting on it. The impact loads can cause large bending stresses, which may exceed the yield stress of the plate material. The elastic vibrations of the plate are shown to have a significant effect on the fluid flow in the wake

    Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks

    Full text link
    Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.Comment: 8 pages, 6 figures, A&A to appea

    Active surveillance of choroidal neovascularisation in children: incidence, aetiology and management findings from a national study in the UK

    Get PDF
    BACKGROUND/AIMS: To determine the UK incidence, demographics, aetiology, management and visual outcome for children developing choroidal neovascularisation (CNV). METHODS: A prospective population-based observational study of routine practice via the British Ophthalmological Surveillance Unit between January 2012 and December 2013 with subsequent 1-year follow-up in children under 16 years old with newly diagnosed CNV. RESULTS: Twenty-seven children with CNV were reported. The UK estimated annual incidence for those aged 16 and under was 0.21 per 100 000 (95% CI 0.133 to 0.299). The mean age was 11.1 years (SD 3.9, range 4-16). Fourteen were female. Seventy-seven per cent (22 patients) were Caucasian British. Twenty-three children (85%) had unilateral disease. The most common aetiology included inflammatory retinochoroidopathy (n=9), optic disc abnormalities (n=9) and idiopathic (n=5). Optical coherence tomography was performed in all cases and fundus fluorescein angiography in 61%. Management included observation only (n=10), anti-vascular endothelial growth factor (anti-VEGF) injection of bevacizumab (n=14) or ranibizumab (n=2), or both (n=1), and additional use of oral (n=1) and local (periocular n=2 and intravitreal n=2) steroids in five children with inflammatory retinochoroidopathy. The mean number of anti-VEGF injections was 2±1, with eight patients receiving only one injection. The mean (SD) best corrected visual acuity in LogMAR was 0.91 (0.53) at presentation and 0.74 (0.53) at 1-year follow-up (p=0.09). CONCLUSION: This is the first population-based prospective study of CNV in children. This is a rare disorder with a poor visual prognosis irrespective of CNV location and the use of anti-VEGF therapy

    Stochastic Perturbations in Vortex Tube Dynamics

    Full text link
    A dual lattice vortex formulation of homogeneous turbulence is developed, within the Martin-Siggia-Rose field theoretical approach. It consists of a generalization of the usual dipole version of the Navier-Stokes equations, known to hold in the limit of vanishing external forcing. We investigate, as a straightforward application of our formalism, the dynamics of closed vortex tubes, randomly stirred at large length scales by gaussian stochastic forces. We find that besides the usual self-induced propagation, the vortex tube evolution may be effectively modeled through the introduction of an additional white-noise correlated velocity field background. The resulting phenomenological picture is closely related to observations previously reported from a wavelet decomposition analysis of turbulent flow configurations.Comment: 16 pages + 2 eps figures, REVTeX

    Hot Jupiters and stellar magnetic activity

    Full text link
    Recent observations suggest that stellar magnetic activity may be influenced by the presence of a close-by giant planet. Specifically, chromospheric hot spots rotating in phase with the planet orbital motion have been observed during some seasons in a few stars harbouring hot Jupiters. The spot leads the subplanetary point by a typical amount of about 60-70 degrees, with the extreme case of upsilon And where the angle is about 170 degrees. The interaction between the star and the planet is described considering the reconnection between the stellar coronal field and the magnetic field of the planet. Reconnection events produce energetic particles that moving along magnetic field lines impact onto the stellar chromosphere giving rise to a localized hot spot. A simple magnetohydrostatic model is introduced to describe the coronal magnetic field of the star connecting its surface to the orbiting planet. The field is assumed to be axisymmetric around the rotation axis of the star and its configuration is more general than a linear force-free field. With a suitable choice of the free parameters, the model can explain the phase differences between the hot spots and the planets observed in HD 179949, upsilon And, HD 189733, and tau Bootis, as well as their visibility modulation on the orbital period and seasonal time scales. The possible presence of cool spots associated with the planets in tau Boo and HD 192263 cannot be explained by the present model. However, we speculate about the possibility that reconnection events in the corona may influence subphotospheric dynamo action in those stars producing localized photospheric (and chromospheric) activity migrating in phase with their planets.Comment: 9 pages, 5 figures, 2 tables, 2 appendixes, accepted by Astronomy & Astrophysic

    In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    Get PDF
    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors

    Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy.

    Get PDF
    Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy
    corecore