1,138 research outputs found
Diversity of the parB and repA genes of the Burkholderia cepacia complex and their utility for rapid identification of Burkholderia cenocepacia
Background: Burkholderia cenocepacia is the most prominent species of the B. cepacia complex (Bcc), a group of nine closely related and difficult to identify bacteria that cause serious infections in patients with cystic fibrosis. Despite its clinical relevance, identification of B. cenocepacia as a single species is unavailable, as it splits by a widely used recA gene-based PCR identification method into discrete phylogenetic subgroups IIIA, IIIB, IIIC and IIID. With the aim of identifying gene targets
suitable for unified detection of B. cenocepacia strains, we examined sequence polymorphisms in the repA and parB genes. These essential genes are involved in the replication and partitioning of bacterial replicons, hence we also had the opportunity for the first time to investigate the evolution of the multireplicon (three chromosome) structure of Bcc genomes.
Results: Alignment of the repA and parB genes from publicly available Bcc genome sequences enabled the design of primers for their amplification and sequence analysis. Multilocus sequencing typing, a highly discriminatory method for Bcc species and strain discrimination, was used to select strains of unique sequence types (STs) that spanned the known Bcc genetic diversity. Sequence
datasets of repA (83 isolates, 67 STs) and parB (120 isolates, 95 STs) genes from the second chromosome were aligned and examined phylogenetically to identify polymorphisms suitable for identification of B. cenocepacia. In contrast to parB, the Bcc repA sequences demonstrated distinct clustering of B. cenocepacia from other species, which enabled the design a species-specific
multiplex PCR. The novel single-reaction B. cenocepacia detection method was tested on a panel of 142 different Bcc strains (142 STs) and distinguished recA groups IIIA, IIIB and IIID, from all other Bcc members with 100% sensitivity and 93% specificity.
Conclusion: The repA-based multiplex PCR is a useful aid to the rapid identification of the most clinically relevant B. cenocepacia recA subgroups IIIA, IIIB and IIID. Phylogenetic analysis of repA and parB genes demonstrated that acquisition of the second and third replicons of Bcc genomes occurred prior to their differentiation into discrete species and that the sharing of replicons across
species had not occurred
Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes
Background: The Cronobacter genus (Enterobacter sakazakii) has come to prominence due to its association with infant infections, and the ingestion of contaminated reconstituted infant formula. C. sakazakii and C. malonaticus are closely related, and are defined according their biotype. Due to the ubiquitous nature of the organism, and the high severity of infection for the immunocompromised, a multilocus sequence typing (MLST) scheme has been developed for the fast and reliable identification and discrimination of C. sakazakii and C. malonaticus strains. It was applied to 60 strains of C. sakazakii and 16 strains of C. malonaticus, including the index strains used to define the biotypes. The strains were from clinical and non-clinical sources between 1951 and 2008 in USA, Canada, Europe, New Zealand and the Far East.
Results: This scheme uses 7 loci; atpD, fusA, glnS, gltB, gyrB, infB, and pps. There were 12 sequence types (ST) identified in C. sakazakii, and 3 in C. malonaticus. A third (22/60) of C. sakazakii strains were in ST4, which had almost equal numbers of clinical and infant formula isolates from 1951 to 2008. ST8 may represent a particularly virulent grouping of C. sakazakii as 7/8 strains were clinical in origin which had been isolated between 1977 - 2006, from four countries. C. malonaticus divided into three STs. The previous Cronobacter biotyping scheme did not clearly correspond with STs nor with species.
Conclusion: In conclusion, MLST is a more robust means of identifying and discriminating between C. sakazakii and C. malonaticus than biotyping. The MLST database for these organisms is available online at http://pubmlst.org/cronobacter
Interaction of Co(II), Ni(II) and Cu(II) with dibenzo-substituted macrocyclic ligands incorporating both symmetrically and unsymmetrically arranged N, O and S donors
The synthesis and characterisation of four 17-membered, dibenzo-substituted macrocyclic ligands incorporating unsymmetrical arrangements of their N3S2, N3O2 and N3OS (two ligands) donor atoms are described; these rings complete the matrix of related macrocyclic systems incorporating both symmetric and unsymmetric donor sets reported previously. The X-ray structures of three of the new macrocycles are reported. In two of the Cu(II) structures only three of the possible five donor atoms present in the corresponding macrocyclic ligand bind to the Cu(II) site, whereas all five donors are coordinated in each of the remaining complexes. The interaction of Co(II), Ni(II) and Cu(II) with the unsymmetric macrocycle series has been investigated by potentiometric (pH) titration in 95% methanol; X-ray structures of two nickel and three copper complexes of these ligands, each exhibiting 1 : 1 (M :L) ratios, have been obtained. The results are discussed in the context of previous results for these metals with the analogous 17-membered ring systems incorporating symmetrical arrangements of their donor atoms, with emphasis being given to both the influence of the donor atom set, as well as the donor atom sequence, on the nature of the resulting complexes
Statistical-mechanics approach to a reinforcement learning model with memory
We introduce a two-player model of reinforcement learning with memory. Past
actions of an iterated game are stored in a memory and used to determine
player's next action. To examine the behaviour of the model some approximate
methods are used and confronted against numerical simulations and exact master
equation. When the length of memory of players increases to infinity the model
undergoes an absorbing-state phase transition. Performance of examined
strategies is checked in the prisoner' dilemma game. It turns out that it is
advantageous to have a large memory in symmetric games, but it is better to
have a short memory in asymmetric ones.Comment: 6 pages, some additional numerical calculation
Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil
Invasive infections caused by Corynebacterium diphtheriae in vaccinated and non-vaccinated individuals have been reported increasingly. In this study we used multilocus sequence typing (MLST) to study genetic relationships between six invasive strains of this bacterium isolated solely in the urban area of Rio de Janeiro, Brazil, during a 10-year period. Of note, all the strains rendered negative results in PCR reactions for the tox gene, and four strains presented an atypical sucrose-fermenting ability. Five strains represented new sequence types. MLST results did not support the hypothesis that invasive (sucrose-positive) strains of C. diphtheriae are part of a single clonal complex. Instead, one of the main findings of the study was that such strains can be normally found in clonal complexes with strains related to non-invasive disease. Comparative analyses with C. diphtheriae isolated in different countries provided further information on the geographical circulation of some sequence types
Bayesian modeling of recombination events in bacterial populations
Background: We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of
strains in a data set increases.
Results: We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker) implementing the model and the
corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites.
Conclusion: A multitude of challenging simulation scenarios and an analysis of real data from seven
housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities
offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/
mnf//mate/jc/software/brat.html
Rational ligand design for metal ion recognition. Synthesis of a N-benzylated N2S3-donor macrocycle for enhanced silver(I) discrimination
Four previously documented ligand design strategies for achieving Ag(I) discrimination have been applied to the design of a new N-benzylated N2S3-donor macrocycle; the latter shows high selectivity for Ag(I) over Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) in log K and bulk membrane transport studies
- …
