169 research outputs found

    Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    Get PDF
    Engineering and Applied Science

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    Characterization of Bacillus anthracis Persistence In Vivo

    Get PDF

    A Three-Hybrid System to Probe In Vivo Protein-Protein Interactions: Application to the Essential Proteins of the RD1 Complex of M. tuberculosis

    Get PDF
    BACKGROUND: Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. METHODOLOGY/PRINCIPAL FINDINGS: The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. CONCLUSIONS/SIGNIFICANCE: The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes

    Gene Clusters Located on Two Large Plasmids Determine Spore Crystal Association (SCA) in Bacillus thuringiensis Subsp. finitimus Strain YBT-020

    Get PDF
    Crystals in Bacillus thuringiensis are usually formed in the mother cell compartment during sporulation and are separated from the spores after mother cell lysis. In a few strains, crystals are produced inside the exosporium and are associated with the spores after sporulation. This special phenotype, named ‘spore crystal association’ (SCA), typically occurs in B. thuringiensis subsp. finitimus. Our aim was to identify genes determining the SCA phenotype in B. thuringiensis subsp. finitimus strain YBT-020. Plasmid conjugation experiments indicated that the SCA phenotype in this strain was tightly linked with two large plasmids (pBMB26 and pBMB28). A shuttle bacterial artificial chromosome (BAC) library of strain YBT-020 was constructed. Six fragments from BAC clones were screened from this library and discovered to cover the full length of pBMB26; four others were found to cover pBMB28. Using fragment complementation testing, two fragments, each of approximately 35 kb and located on pBMB26 and pBMB28, were observed to recover the SCA phenotype in an acrystalliferous mutant, B. thuringiensis strain BMB171. Furthermore, deletion analysis indicated that the crystal protein gene cry26Aa from pBMB26, along with five genes from pBMB28, were indispensable to the SCA phenotype. Gene disruption and frame-shift mutation analyses revealed that two of the five genes from pBMB28, which showed low similarity to crystal proteins, determined the location of crystals inside the exosporium. Gene disruption revealed that the three remaining genes, similar to spore germination genes, contributed to the stability of the SCA phenotype in strain YBT-020. Our results thus identified the genes determining the SCA phenotype in B. thuringiensis subsp. finitimus

    Early events of Bacillus anthracis germination identified by time-course quantitative proteomics

    Full text link
    Germination of Bacillus anthracis spores involves rehydration of the spore interior and rapid degradation of several of the protective layers, including the spore coat. Here, we examine the temporal changes that occur during B. anthracis spore germination using an isobaric tagging system. Over the course of 17 min from the onset of germination, the levels of at least 19 spore proteins significantly decrease. Included are acid-soluble proteins, several known and predicted coat proteins, and proteins of unknown function. Over half of these proteins are small (less than 100 amino acids) and would have been undetectable by conventional gel-based analysis. We also identified 20 proteins, whose levels modestly increased at the later time points when metabolism has likely resumed. Taken together, our data show that isobaric labeling of complex mixtures is particularly effective for temporal studies. Furthermore, we describe a rigorous statistical approach to define relevant changes that takes into account the nature of data obtained from multidimensional protein identification technology coupled with the use of isobaric tags. This study provides an expanded list of the proteins that may be involved in germination of the B. anthracis spore and their relative levels during germination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55849/1/5199_ftp.pd

    Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology

    Full text link
    Bacterial spores are encased in a multilayered proteinaceous shell, called the coat. In many Bacillus spp., the coat protects against environmental assault and facilitates germination. In Bacillus anthracis , the spore is the etiological agent of anthrax, and the functions of the coat likely contribute to virulence. Here, we characterize a B. anthracis spore protein, called CotΒ, which is encoded only in the genomes of the Bacillus cereus group. We found that CotΒ is synthesized specifically during sporulation and is assembled onto the spore coat surface. Our analysis of a cotΒ null mutant in the Sterne strain reveals that CotΒ has a role in determining coat-surface morphology but does not detectably affect germination. In the fully virulent Ames strain, a cotΒ null mutation has no effect on virulence in a murine model of B. anthracis infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72138/1/j.1574-6968.2008.01380.x.pd

    Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility

    Get PDF
    The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome

    A Geometrical Model for DNA Organization in Bacteria

    Get PDF
    Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli
    corecore